382
Views
3
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the production amount of 225Ac and its uncertainty through the 226Ra(n,2n) reaction in the experimental fast reactor Joyo

, , , , , , & show all
Pages 509-520 | Received 30 Dec 2022, Accepted 14 Jul 2023, Published online: 21 Aug 2023

References

  • McDevitt MR, Sgouros G, Finn RD et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 1998;25(9):1341–1351. doi: 10.1007/s002590050306
  • Couturier O, Supiot S, Degraef-Mougin M et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 2005;32(5):601–614. doi: 10.1007/s00259-005-1803-2
  • Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted {alpha}-particle therapy. J Nucl Med. 2005;46(1):S199–S204.
  • Brechbiel MW. Targeted alpha-therapy: past, present, future? Dalton Trans. 2007;43:4918–4928. doi: 10.1039/b704726f
  • Wilbur SD. Chemical and radiochemical considerations in radiolabeling with α-emitting radionuclides. Curr Radiopharm. 2011;4(3):214–217. doi: 10.2174/1874471011104030214
  • Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumour Biol. 2012;3(3):573–590. doi: 10.1007/s13277-011-0286-y
  • Baidoo KE, Yong K, Brechbiel MW. Molecular pathways: targeted α-particle radiation therapy. Clin Cancer. 2013;19(3):530–537. doi: 10.1158/1078-0432.CCR-12-0298
  • Elgqvist J, Frost S, Pouget JP et al. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front Oncol. 2014;3:324. Abstract. doi: 10.3389/fonc.2013.00324
  • Causey P, Perron R, Gendron D. Production of Actinium-225 at the canadian nuclear laboratories: operation of a thorium generator and quality control of Ac-225. J Nucl Med May. 2020;61(supplement 1):467.
  • Kyle Henderson Robertson A, Fortunata Ramogida C, Schaffer P et al. Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. Curr Radiopharm. 2018;11(3):156–172. doi: 10.2174/1874471011666180416161908
  • Higashi T, Nagatsu K, Tsuji AB et al. Research and development for cyclotron production of 225Ac from 226Ra—The challenges in a country lacking natural resources for medical applications. Multid Digital Publish Inst Process. 2022;10(6):1215. doi: 10.3390/pr10061215
  • Tadokoro T, Ueno Y, Kani Y et al. Experimental study on the production of Ac-225 using an electron linear accelerator. J Nucl Med. 2021 May;62(1):68.
  • Hogle S, Ann Boll R, Murphy K et al. Reactor production pf thorium-229. Appl Radiat Isot. 2016;114:19–27. doi: 10.1016/j.apradiso.2016.05.002
  • Iwahashi D, Kawamoto K, Sasaki Y et al. Neutronic study on production of Ac-225 for cancer therapy by (n,2n) reaction of Ra-226 or Th-230 using fast reactor Joyo. Multid Digital Publish Inst Process. 2022;10(7):1239. doi: 10.3390/pr10071239
  • WWW Chart of the Nuclide 2014, Japan: Japan Atomic Energy Agency; 2015 June 8 Available from: https://wwwndc.jaea.go.jp/CN14/index.html (accessed on 5 October 2022)
  • McAlister DR, Horwitz EP. Chromatographic generator systems for the actinides and natural decay series elements. Radiochim Acta. 2011;99(3):151–159. doi: 10.1524/ract.2011.1804
  • Pourmand A, Dauphas N. Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta. 2010;20(3):741–753. doi:10.1016/j.talanta.2010.01.008
  • Burnett WC, Cable PH, Moser R. Determination of Radium-228 in natural waters using extraction chromatographic resins. Radioact Radiochem. 1995;6:36–44.
  • Włodzimirska B, Bartoś B, Bilewicz A. Preparation of 225Ac and 228Ac generators using a cryptomelane manganese dioxide sorbent. Radiochim. 2003;91(9):553–556. Acta. doi: 10.1524/ract.91.9.553.19996
  • McAlister DR, Philip Horwitz E. Characterization of extraction of chromatographic materials containing Bis(2-ethyl-1-hexyl)Phosphoric Acid, 2-Ethyl-1-Hexyl (2-Ethyl-1-Hexyl) phosphonic acid, and Bis(2,4,4-trimethyl-1-pentyl)phosphinic acid. Solvent Extr Ion Exch. 2007;25(6):757–769. doi: 10.1080/07366290701634594
  • Maeda Y, Aoyama T, Odo T et al. Distinguished achievements of a quarter-century operation and a promising project named MK-III in JOYO. Nucl Technol. 2005;150(1):16–36. Sodium Technology Special. doi: 10.13182/NT05-A3602
  • Isozaki K, Ashida T, Sumino K et al. Upgrade of cooling system heat removal capacity of the experimental fast reactor JOYO. Nucl Technol. 2005;150(1):56–66. Sodium Technology Special. doi: 10.13182/NT05-A3605
  • Aoyama T, Sekine T, Maeda S, et al. Soju Suzuki, Toshikazu Takeda, Core performance tests for the JOYO MK-III upgrade. Nucl Eng Des. 2007 February;237(4):353–368. doi: 10.1016/j.nucengdes.2006.07.003
  • Research Reactor Database (RRDB) IAEA, International Atomic Energy Agency. [cited 2023 June 27]. Available from: https://nucleus.iaea.org/rrdb/#/home
  • CROFF AG. ORIGEN2: a revised and updated version of the Oak Ridge isotope generation and depletion code/ ORNL-5621, 1980.
  • Goorley John T, James Michael R, Booth Thomas E. Initial MCNP6 Release Overview - MCNP6 version 1.0. LA-UR-13-22934. 2013.
  • Maeda S, Ito C, Ohkawachi Y. Takashi Sekine and Takafumi aoyama, characterization of neutron fields in the experimental fast reactor Joyo MK-III core, Proceedings of 13th International Symposium on Reactor Dosimetry, 2008 May 25-30, Alkmaar Netherlands.
  • Taniguchi T, Ueda N, Nakazawa M et al. Systematic study on spectral effects in the adjustment calculations using the NEUPAC-83 code. Proc The Fifth Int Symp On Reactor Dosimetry, 1985 Sep 24-28, Geesthacht(Germany), Springer, Dordrecht; 685–692. doi:10.1007/978-94-010-9726-0_16
  • Koning AJ, Rochman D. Towards sustainable nuclear energy: putting nuclear physics to work Ann. Nucl Energy. 2008 November;35(11):2024–2030. doi: 10.1016/j.anucene.2008.06.004
  • Maeda S, Naito H, Aoyama T. Gamma heating rate evaluation for material irradiation test in the joyo experimental fast reactor. Apil: Nucl Data Sheets. 2014;119(1):394–497. doi: 10.1016/j.nds.2014.04.116
  • Shibata K, Iwamoto O, Nakagawa T et al. JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol. 2011;48(1):1–30. doi: 10.1080/18811248.2011.9711675
  • Ohkawachi Y, Maeda S, Sekine T. “Joyo MK-II core characteristics database -Update to JFS-3-J3.2R-” JAERI-Conference 2003-006(3.30) Japan, pp. 294–299 (2003)
  • Takagi N, Sekimoto H, Nakagawa T. Evaluation of neutron nuclear data for Z>88 minor nuclides. J Nucl Sci Technol. 1990;27(9):853–861. doi: 10.1080/18811248.1990.9731263
  • Iwamoto O, Iwamoto N, Kunieda S, et al. The CCONE code system and its application to nuclear data evaluation for fission and other reactions. Nucl Data Sheets. 2016;131:259–288. doi: 10.1016/j.nds.2015.12.004
  • Hauser W, Feshbach H. The Inelastic Scattering of Neutrons. Phys Rev. 1952;87(2):366–373. doi: 10.1103/PhysRev.87.366
  • Kalbach C. Two-component exciton model: Basic formalism away from shell closures. Phys Rev C. 1986;33(3):818–833. doi: 10.1103/PhysRevC.33.818
  • Kunieda S, Chiba S, Shibata K, et al. Coupled-channels optical model analyses of nucleon-induced reactions for medium and heavy nuclei in the energy region from 1 keV to 200 MeV. J Nucl Sci Technol. 2007;44(6):838–852. doi: 10.1080/18811248.2007.9711321
  • Koning A, Delaroche J. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A. 2003;713(3):231–310. doi: 10.1016/S0375-9474(02)01321-0
  • Han Y, Shi Y, Shen Q. Deuteron global optical model potential for energies up to 200 MeV. Phys Rev C. 2006;74(4):044615. doi: 10.1103/PhysRevC.74.044615
  • Xu Y, Guo H, Han Y. Helium-3 global optical model potential with energies below 250 MeV. Sci China Phys Mech Astron. 2011;54(11):2005–2014. doi: 10.1007/s11433-011-4488-5
  • McFadden L, Satchler GR. Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nucl Phys. 1966;84:177–200. doi: 10.1016/0029-5582(66)90441-X
  • Otuka N, Dupont E, Semkova V, et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl Data Sheets. 2014;120:272–276. doi: 10.1016/j.nds.2014.07.065
  • Gilbert A, Cameron AGW. A composite nuclear level density formula with shell corrections. Can J Phys. 1965;43:1446–1496. doi: 10.1139/p65-139
  • Kopecky J, Uhl M. Test of gamma-ray strength functions in nuclear reaction model calculations. Phys Rev C. 1990;41(5):1941–1955. doi: 10.1103/PhysRevC.41.1941
  • Hill DL, Wheeler JA. Nuclear constitution and the interpretation of fission phenomena. Phys Rev. 1953;89(5):1102–1145. doi: 10.1103/PhysRev.89.1102
  • Kawano T, Shibata K. Covariance Evaluation System. JAERI-Data/Code97-037, 1997.
  • O’Connor LP, Perkin JL. Cross-sections for the reactions 226Ra(n,2n)225Ra and 226Ra(n,3n)224Ra with 14.5 MeV neutrons. J Inor Nucl Chem. 1960;13:5–12. doi: 10.1016/0022-1902(60)80227-8
  • Kratochwil C, Bruchertseifer F, Rathke H et al. Targeted A-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor contro. J Nucl Med. 2018;59:795–802. doi: 10.2967/jnumed.117.203539
  • Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-Targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57(12):1941–1944. doi: 10.2967/jnumed.116.178673

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.