317
Views
0
CrossRef citations to date
0
Altmetric
Article

First-principles calculations to investigate thermodynamic and mechanical behaviors of molybdenum-lanthanum alloy

, , &
Pages 595-605 | Received 14 Mar 2023, Accepted 05 Aug 2023, Published online: 22 Aug 2023

References

  • Byun JM, Hwang SH, Lee S et al. Microstructure control of Mo–Si–B alloy for formation of continuous α-Mo phase. Int J Refract Met Hard Mater. 2015;53:61. doi: 10.1016/j.ijrmhm.2015.03.006
  • Yu JL, Li ZK, Zheng X et al. Tensile properties of multiphase Mo–Si–B refractory alloys at elevated temperatures. Eng A. 2012;532:392. doi: 10.1016/j.msea.2011.11.001
  • Li WH, Zhang GJ, Wang SX et al. Ductility of Mo–12Si–8.5B alloys doped with lanthanum oxide by the liquid–liquid doping method. J Alloys Compd. 2015;642:34. doi: 10.1016/j.jallcom.2015.04.047
  • Dimiduk DM, Perepezko JM. Mo-Si-B alloys: developing a revolutionary turbine-engine material. MRS Bull. 2003;28:639. doi: 10.1557/mrs2003.191
  • Marot L, Meyer E, Rubel M et al. JET-EFDA Contributors. J Nucl Mater. 2013;438:S1187. doi: 10.1016/j.jnucmat.2013.01.262
  • Miyamoto M, Takaoka H, Ono K et al. Crystal orientation dependence of surface modification in molybdenum mirror irradiated with helium ions. Nucl Mater. 2014;455:297. doi: 10.1016/j.jnucmat.2014.06.030
  • Moser L, Steiner R, Leipold F et al. Plasma cleaning of ITER first mirrors in magnetic field. J Nucl Mater. 2015;463:940. doi: 10.1016/j.jnucmat.2014.11.087
  • Lee G, Manière C, McKittrick J et al. Consolidation of molybdenum nanopowders by spark plasma sintering: Densification mechanism and first mirror application. J Nucl Mater. 2019;516:354. doi: 10.1016/j.jnucmat.2019.01.028
  • Liu G, Zhang GJ, Jiang F et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater. 2013;12:344. doi: 10.1038/nmat3544
  • El-Genk MS, Tournier JM. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J Nucl Mater. 2005;340:93. doi: 10.1016/j.jnucmat.2004.10.118
  • Iorio LE, Bewlay BP, Larsen M. Analysis of AKS- and lanthana-doped molybdenum wire. Int J Refract Met Hard Mater. 2006;24(4):306. doi: 10.1016/j.ijrmhm.2005.10.004
  • Yang XQ, Tan H, Lin N et al. The influences of La doping method on the microstructure and mechanical properties of Mo alloys. Int J Refract Met Hard Mater. 2015;51:301–308. doi: 10.1016/j.ijrmhm.2015.04.034
  • Cheng PM, Zhang GL, JY Z et al. Coupling effect of intergranular and intragranular particles on ductile fracture of Mo–La2O3 alloys. Mater Sci Eng A. 2015;640:320. doi: 10.1016/j.msea.2015.05.032
  • Chen C, Tan W, Wang MP et al. The transverse elongation and fracture mechanism of the upset Mo and Mo–La2O3 bars. Mater Sci Eng A. 2010;527:600. doi: 10.1016/j.msea.2009.09.038
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Hafner J Phys Rev B. 1993;47(1):558. doi: 10.1103/PhysRevB.47.558
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Furthmüller J Phys Rev B. 1996;54(16):11169. doi: 10.1103/PhysRevB.54.11169
  • Alnujaim S, Bouhemadou A, Chegaar M et al. Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. The European Phys J B. 2022;95:114. doi: 10.1140/epjb/s10051-022-00381-2
  • Drici L, Belkharroubi F, Boufadi FZ et al. First-principles calculations of structural, elastic, electronic, and optical properties of CaYP (Y = Cu, Ag) Heusler alloys. Emerg Mater. 2022;5:1039. doi: 10.1007/s42247-021-00211-8
  • Radja K, Farah BL, Ibrahim A et al. Investigation of structural, magneto-electronic, elastic, mechanical and thermoelectric properties of novel lead-free halide double perovskite Cs2AgFeCl6: first-principles calcuations. J Phys Chem Solids. 2022;167:110795. doi: 10.1016/j.jpcs.2022.110795
  • Khireddine A, Bouhemadou A, Maabed S et al. Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2. Solid State Sci. 2022;128:106893. doi: 10.1016/j.solidstatesciences.2022.106893
  • Asma B, Belkharroubi F, Ibrahim A et al. Structural, mechanical, magnetic, electronic, and thermal investigations of Ag2YB (Y = nd, Sm, Gd) full-Heusler alloys. Emerg Mater. 2021;4:1769. doi: 10.1007/s42247-021-00257-8
  • Perdew JP, Chevary JA, Vosko SH et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1996;46:6671. doi: 10.1103/PhysRevB.46.6671
  • Perdew JP, Burke K, Ernzerhof M. Perdew, burke, and ernzerhof reply. Phys Rev Lett. 1998;80:891. doi: 10.1103/PhysRevLett.80.891
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865
  • Blochl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758
  • Kittel C. Introduction to Solid State Physics. 7th ed. New York: Wiley; 1996.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188. doi: 10.1103/PhysRevB.13.5188
  • Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B. 1989;40:3616. doi: 10.1103/PhysRevB.40.3616
  • https://materialsproject.org.
  • Domain C, Becquart CS, Foct J. Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α -Fe. Foct J Phys Rev B. 2004;69(14):144112. doi: 10.1103/PhysRevB.69.144112
  • Kraftmakher Y. Equilibrium vacancies and thermophysical properties of metals. Phys Rep. 1998;299:79. doi: 10.1016/S0370-1573(97)00082-3
  • Schafer HE. Investigation of thermal equilibrium vacancies in metals by positron annihilation. Status Solidi A. 1987;102:47. doi: 10.1002/pssa.2211020104
  • Muzyk M, Nguyen-Manh D, Kurzydłowski KJ et al. Phase stability, point defects, and elastic properties of W-V and W-Ta alloys. Phys Rev B. 2011;84:104115. doi: 10.1103/PhysRevB.84.104115
  • Ohnuma T, Soneda N, Iwasawa MAM. First-principles calculations of vacancy–solute element interactions in body-centered cubic iron. Acta Materialia. 2009;57(20):5947. doi: 10.1016/j.actamat.2009.08.020
  • Clouet E, Varvenne C, Jourdan T. Elastic modeling of point-defects and their interaction. Comput Mater Sci. 2018;147:49. doi: 10.1016/j.commatsci.2018.01.053
  • Varvenne C, Bruneval F, Marinica M-C, et al. Point defect modeling in materials: coupling ab initio and elasticity approaches. Phys Rev B. 2013;88(13):134102. doi: 10.1103/PhysRevB.88.134102
  • Pasianot RC. Self-interstitials structure in the hcp metals: a further perspective from first-principles calculations. J Nucl Mater. 2016;481:147. doi: 10.1016/j.jnucmat.2016.09.021
  • Souissi M, Chen Y, Sluiter MH et al. Ab initio characterization of B, C, N, and O in bcc iron: solution and migration energies and elastic strain fields. Comput Mater Sci. 2016;124:249. doi: 10.1016/j.commatsci.2016.07.037
  • Olsson P, Klaver TPC, Domain C. Phys Rev B. 2010;81:054102. doi: 10.1103/PhysRevB.81.054102
  • Wolverton C. Solute–vacancy binding in aluminum. Acta Mater. 2007;55:5867. doi: 10.1016/j.actamat.2007.06.039
  • Wallace C. Phys Status Solidi B. 1970;25:301.
  • Zhao JJ, Winey JM, Gupta YM. First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry. Phys Rev B. 2007;75(9):094105. doi: 10.1103/PhysRevB.75.094105
  • Wang J, Yip S, Phillpot SR, et al. Crystal instabilities at finite strain. Phys Rev Lett. 1993;71(25):4182. doi: 10.1103/PhysRevLett.71.4182
  • Kelly A, Macmillan NH. Strong solids. 3rd ed. Clarendon, Oxford; 1986.
  • Liu YL, Zhou HB, Zhang Y. Ideal mechanical properties of vanadium by a first-principles computational tensile test. J Nucl Mater. 2011;416:345. doi: 10.1016/j.jnucmat.2011.06.027
  • Yang JW, Gao T, Gong YSSS. The disproportionation reaction phase transition, mechanical, and lattice dynamical properties of the lanthanum dihydrides under high pressure: a first principles study. Solid State Sci. 2014;32:76. doi: 10.1016/j.solidstatesciences.2014.03.019
  • Reuss A, Angew Z. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Angew Math Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65:349. doi: 10.1088/0370-1298/65/5/307
  • Meradji H, Drablia S, Ghemid S. First-principles elastic constants and electronic structure of BP, BAs, and BSb. Status Solidi B. 2004;241(13):2881. doi: 10.1002/pssb.200302064
  • Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1954;45:823. doi: 10.1080/14786440808520496