498
Views
2
CrossRef citations to date
0
Altmetric
Article

Connection of four-dimensional Langevin model and Hauser-Feshbach theory to describe statistical decay of fission fragments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 84-97 | Received 27 Jun 2023, Accepted 12 Oct 2023, Published online: 30 Nov 2023

References

  • Tsujimoto K, Oigawa H, Ouchi N, et al. Research and development program on accelerator driven subcritical system in JAEA. J Nucl Sci Technol. 2007;44(3):483–490. doi: 10.1080/18811248.2007.9711312
  • Mukaiyama T, Takizuka T, Mizumoto M, et al. Review of research and development of accelerator driven system in Japan for transmutation of long-lived nuclides. Prog Nucl Energy. 2001;38(1):107134. Accelerator Transmutation of Waste. doi: 10.1016/S0149-1970(00)00098-6
  • Chiba S, Wakabayashi T, Tachi Y, et al. Method to reduce long-lived fission products by nuclear transmutations with fast spectrum reactors. Sci Rep. 2017 Oct;7(1):13961. doi: 10.1038/s41598-017-14319-7
  • Wahl AC. Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U,233U and 239Pu and for spontaneous fission of 252Cf. At Data Nucl Data Tables. 1988;39(1):1–156.
  • Wahl AC. Systematics of fission-product yields. Los Alamos Nat Lab. 2002;LA–13928.
  • Katakura JI. A systematics of fission product mass yields with 5 Gaussian functions. Japan At Energy Res Inst. 2003;2003–004.
  • Madland DG, Nix JR. New calculation of prompt fission neutron spectra and average prompt neutron multiplicities. Nucl Sci Eng. 1982;81(2):213–271. doi: 10.13182/NSE82-5
  • Lemaire S, Talou P, Kawano T, et al. Monte Carlo approach to sequential neutron emission from fission fragments. Phys Rev C. 2005 Aug;72(2):024601. doi: 10.1103/PhysRevC.72.024601
  • Talou P, Stetcu I, Jaffke P, et al. Fission fragment decay simulations with the CGMF code. Comput Phys Commun. 2021;269:108087. doi: 10.1016/j.cpc.2021.108087
  • Litaize O, Serot O. Investigation of phenomenological models for the Monte Carlo simulation of the prompt fission neutron and γ emission. Phys Rev C. 2010 Nov;82(5):054616. doi: 10.1103/PhysRevC.82.054616
  • Randrup J, Vogt R. Calculation of fission observables through event-by-event simulation. Phys Rev C. 2009 Aug;80(2):024601. doi: 10.1103/PhysRevC.80.024601
  • Vogt R, Randrup J, Pruet J, et al. Event-by-event study of prompt neutrons from 239Pu(n,f). Phys Rev C. 2009 Oct;80(4):044611.
  • Schmidt KH, Jurado B, Amouroux C, et al. General description of fission observables: GEF model code. Nucl Data Sheets Special Issue on Nuclear Reaction Data. 2016;131:107–221. doi: 10.1016/j.nds.2015.12.009
  • Tudora A, Hambsch FJ, Tobosaru V. Revisiting the residual temperature distribution in prompt neutron emission in fission. Eur Phys J A. 2018 May;54(5):87. doi: 10.1140/epja/i2018-12521-7
  • Okumura S, Kawano T, Jaffke P, et al. 235U(n,f) independent fission product yield and isomeric ratio calculated with the statistical Hauser-Feshbach theory. J Nucl Sci Technol. 2018;55(9):1009–1023.
  • Tudora A. Experimental prompt fission neutron “sawtooth” data described by the “point by point” model. Ann Nucl Energy. 2006;33(11):1030–1038. doi: 10.1016/j.anucene.2006.04.007
  • Koning A, Rochman D. Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets. 2012;113(12):2841–2934. Special Issue on Nuclear Reaction Data. doi: 10.1016/j.nds.2012.11.002
  • Sadhukhan J, Nazarewicz W, Schunck N. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu. Phys Rev C. 2016 Jan;93(1):011304. doi: 10.1103/PhysRevC.93.011304
  • Tanimura Y, Lacroix D, Ayik S. Microscopic Phase-Space Exploration Modeling of 258Fm spontaneous fission. Phys Rev Lett. 2017 Apr;118(15):152501. doi: 10.1103/PhysRevLett.118.152501
  • Lemaître JF, Goriely S, Hilaire S, et al. Fully microscopic scission-point model to predict fission fragment observables. Phys Rev C. 2019 Mar;99(3):034612. doi: 10.1103/PhysRevC.99.034612
  • Bulgac A, Jin S, Roche KJ, et al. Fission dynamics of 240Pu from saddle to scission and beyond. Phys Rev C. 2019 Sep;100(3):034615. doi: 10.1103/PhysRevC.100.034615
  • Bulgac A, Jin S, Stetcu I. Nuclear fission dynamics: past, present, needs, and future. Front Phys. 2020;8. doi: 10.3389/fphy.2020.00063
  • Zhao K, He Y, Li Z, et al. The description of dynamical fission process using improved quantum molecular dynamics model incorporated with microscopic potential energy surface. Phys Lett B. 2023;839:137817. doi: 10.1016/j.physletb.2023.137817
  • Asano T, Wada T, Ohta M, et al. Dynamical calculation of multi-modal nuclear fission of fermium nuclei. J Nucl Radiochem Sci. 2004;5(1):1–5. doi: 10.14494/jnrs2000.5.1
  • Randrup J, Möller P. Brownian shape motion on five-dimensional potential-energy surfaces: nuclear fission-fragment mass distributions. Phys Rev Lett. 2011 Mar;106(13):132503. doi: 10.1103/PhysRevLett.106.132503
  • Aritomo Y, Chiba S, Ivanyuk F. Fission dynamics at low excitation energy. Phys Rev C. 2014 Nov;90(5):054609. doi: 10.1103/PhysRevC.90.054609
  • Pasca H, Andreev A, Adamian G, et al. Possible origin of transition from symmetric to asymmetric fission. Phys Lett B. 2016;760:800–806. doi: 10.1016/j.physletb.2016.07.074
  • Sierk AJ. Langevin model of low-energy fission. Phys Rev C. 2017 Sep;96(3):034603. doi: 10.1103/PhysRevC.96.034603
  • Ishizuka C, Usang MD, Ivanyuk FA, et al. Four-dimensional Langevin approach to low-energy nuclear fission of 236U. Phys Rev C. 2017 Dec;96(6):064616. doi: 10.1103/PhysRevC.96.064616
  • Jaffke P, Möller P, Talou P, et al. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields. Phys Rev C. 2018 Mar;97(3):034608. doi: 10.1103/PhysRevC.97.034608
  • Carjan N, Ivanyuk FA, Oganessian YT. Fission of superheavy nuclei: fragment mass distributions and their dependence on excitation energy. Phys Rev C. 2019 Jun;99(6):064606. doi: 10.1103/PhysRevC.99.064606
  • Mumpower MR, Jaffke P, Verriere M, et al. Primary fission fragment mass yields across the chart of nuclides. Phys Rev C. 2020 May;101(5):054607. doi: 10.1103/PhysRevC.101.054607
  • Usang MD, Ivanyuk FA, Ishizuka C, et al. Correlated transitions in TKE and mass distributions of fission fragments described by 4-D Langevin equation. Sci Rep. 2019 Feb;9(1):1525. doi: 10.1038/s41598-018-37993-7
  • Ishizuka C, Zhang X, Usang MD, et al. Effect of the doubly magic shell closures in 132Sn and 208Pb on the mass distributions of fission fragments of superheavy nuclei. Phys Rev C. 2020 Jan;101(1):011601. doi: 10.1103/PhysRevC.101.011601
  • Maruhn J, Greiner W. The asymmetric two center shell model. Z Phys. 1972 Oct;251(5):431–457. doi: 10.1007/BF01391737
  • Ivanyuk FA, Ishizuka C, Usang MD, et al. Temperature dependence of shell corrections. Phys Rev C. 2018 May;97(5):054331. doi: 10.1103/PhysRevC.97.054331
  • Pashkevich V. On the asymmetric deformation of fissioning nuclei. Nucl Phys A. 1971;169(2):275293. doi: 10.1016/0375-9474(71)90884-0
  • Kelson I. Dynamic calculations of fission of an axially symmetric liquid drop. Phys Rev. 1964 Dec;136(6B):B1667–B1673. doi: 10.1103/PhysRev.136.B1667
  • Davies KTR, Sierk AJ, Nix JR. Effect of viscosity on the dynamics of fission. Phys Rev C. 1976 Jun;13(6):2385–2403. doi: 10.1103/PhysRevC.13.2385
  • Blocki J, Boneh Y, Nix J, et al. One-body dissipation and the super-viscidity of nuclei. Ann Phys. 1978;113(2):330–386. doi: 10.1016/0003-4916(78)90208-7
  • Sierk AJ, Nix JR. Fission in a wall-and-window one-body-dissipation model. Phys Rev C. 1980 Mar;21(3):982–987. doi: 10.1103/PhysRevC.21.982
  • Adeev G, Karpov A, Nadtochy P, et al. Multidimensional stochastic approach to fission dynamic of excited nuclei. Phys Part Nucl. 2005 07;36(4):378–426.
  • Okumura S, Kawano T, Chiba S. The fission yield calculations with Langevin model, HauserFeshbach statistical decay, and beta decay. EPJ Web Conf. 2020;239:03005. doi: 10.1051/epjconf/202023903005
  • Brosa U, Grossmann S, Muller A. Nuclear scission. Phys Rep. 1990;197(4):167–262. doi: 10.1016/0370-1573(90)90114-H
  • Schillebeeckx P, Wagemans C, Deruytter A, et al. Comparative study of the fragments’ mass and energy characteristics in the spontaneous fussion of 238Pu,240Pu and 242Pu and in the thermal neutron-induced fission of 239Pu. Nucl Phys A. 1992;545(3):623–645.
  • Ohsawa T, Horiguchi T, Hayashi H. Multimodal analysis of prompt neutron spectra for 237Np(n,f). Nucl Phys A. 1999;653(1):17–26. doi: 10.1016/S0375-9474(99)00156-6
  • Ohsawa T, Horiguchi T, Mitsuhashi M. Multimodal analysis of prompt neutron spectra for 238Pu(sf), 240Pu(sf),242Pu(sf) and 239Pu(nth,f). Nucl Phys A. 2000;665(1):3–12. doi: 10.1016/S0375-9474(99)00686-7
  • Kawano T, Talou P, Stetcu I, et al. Statistical and evaporation models for the neutron emission energy spectrum in the center-of-mass system from fission fragments. Nucl Phys A. 2013;913(2):51–70. doi: 10.1016/j.nuclphysa.2013.05.020
  • Okumura S, Kawano T, Lovell AE, et al. Energy dependent calculations of fission product, prompt, and delayed neutron yields for neutron induced fission on 235U,238U, and 239Pu. J Nucl Sci Technol. 2022;59(1):96–109. doi: 10.1080/00223131.2021.1954103
  • Fujio K, Al-Adili A, Nordström F, et al. TALYS calculations of prompt fission observables and independent fission product yields for the neutron-induced fission of 235U. Eur Phys J A. 2023 Aug;59(8):178. doi: 10.1140/epja/s10050-023-01095-4
  • Dematte L, Wagemans C, Barthelemy R, et al. Fragments’ mass and energy characteristics in the spontaneous fission of 236Pu,238Pu,240Pu,242Pu, and 244Pu. Nucl Phys A. 1997;617(3):331–346. doi: 10.1016/S0375-9474(97)00032-8
  • Wagemans C. Contemporary fission. Proc 5th Int Symp On Nucleon Induced Reactions. 1988;15:286–304.
  • Wagemans C. On the necessity of alternative methods to determine sample thicknesses and masses. Nucl Instrum Methods Phys Res A. 1989;282(1):4–9. doi: 10.1016/0168-9002(89)90102-2
  • Surin VM, Sergachev AI, Rezchikov NI, et al. Yields and kinetic energies of fragments at the fission of 233U and 239Pu by 5.5 and 15MeV neutrons. Yadern Fiz. 1971 Nov;14(5):935–938.
  • Tsuchiya C, Nakagome Y, Yamana H, et al. Simultaneous measurement of prompt neutrons and fission fragments for 239Pu(nth,f). J Nucl Sci Technol. 2000;37(11):941–948. doi: 10.1080/18811248.2000.9714976
  • Shimada K, Ishizuka C, Ivanyuk FA, et al. Dependence of total kinetic energy of fission fragments on the excitation energy of fissioning systems. Phys Rev C. 2021 Nov;104(5):054609. doi: 10.1103/PhysRevC.104.054609
  • Müller R, Naqvi AA, Käppeler F, et al. Fragment velocities, energies, and masses from fast neutron induced fission of 235U. Phys Rev C. 1984 Mar;29(3):885–905. doi: 10.1103/PhysRevC.29.885
  • Naqvi AA, Käppeler F, Dickmann F, et al. Fission fragment properties in fast-neutron-induced fission of 237Np. Phys Rev C. 1986 Jul;34:218–225.
  • Tudora A, Hambsch FJ, Visan I, et al. Comparing different energy partitions at scission used in prompt emission model codes GEF and point-by-point. Nucl Phys A. 2015;940:242–263. doi: 10.1016/j.nuclphysa.2015.04.012
  • Thulliez L, Litaize O, Serot O, et al. Neutron and γ multiplicities as a function of incident neutron energy for the 237Np(n,f) reaction. Phys Rev C. 2019 Oct;100:044616.
  • Tudora A. Influence of energy partition in fission and pre-neutron fragment distributions on postneutron fragment yields, application for 235U(nth,f). Eur Phys J A. 2022 Jul;58(7):126. doi: 10.1140/epja/s10050-022-00766-y
  • Kawano T, Okumura S, Lovell AE, et al. Influence of nonstatistical properties in nuclear structure on emission of prompt fission neutrons. Phys Rev C. 2021 Jul;104(1):014611. doi: 10.1103/PhysRevC.104.014611