83
Views
0
CrossRef citations to date
0
Altmetric
Article

Spatial evolution mechanism of vortex structure in the highly-loaded helium compressor cascade

ORCID Icon, , , &
Pages 841-855 | Received 18 Jul 2023, Accepted 07 Nov 2023, Published online: 29 Nov 2023

References

  • DISCLAIMER, Technology Road-map Update for Generation IV Nuclear Energy Systems. NEA-GIF-2014-1 . 2014.
  • Saurwein J Next generation Nuclear Plant (NGNP) prismatic HTGR conceptual design project - final Technical report. United States2011.
  • Bredimas A Status of the NGNP Industrial Alliance work and the business plan economics. In: IAEA Technical Meeting on the Economic Analysis of High Temperature Gas Cooled Reactors and Small and Medium Sized Reactors. 2015 Aug 25–28; Vienna, Austria2015.
  • Sawa K, Suzuki S, Shiozawa S. Safety criteria and quality control of HTTR fuel. Nucl Eng Des. 2001;208(3):305–313. doi: 10.1016/S0029-5493(01)00358-2
  • Zhang ZY, Wu ZX, Wang DZ, et al. Current status and technical description of Chinese 2 x 250 MWth HTR-PM demonstration plant. Nucl Eng Des. 2009 Jul;239(7):1212–1219. doi: 10.1016/j.nucengdes.2009.02.023
  • International atomic energy agency Current status and future development of modular high temperature gas cooled reactor technology (Vienna: IAEA). 2001.
  • VI K, NG K, SE B, et al. Development of a design for the GT-MHR energy conversion unit. At Eng. 2007;102(1):67–74. doi: 10.1007/s10512-007-0010-6
  • Xing LY, Hiroyuki S, Yu K, et al. GTHTR300 cost reduction through design upgrade and cogeneration. Nucl Eng Des. 2016;306:215–220. doi: 10.1016/j.nucengdes.2016.02.023
  • Olumide O, Meihong W, Greg K. Closed-cycle gas turbine for power generation: a state-of-the-art review. Fuel. 2016;180:694–717. doi: 10.1016/j.fuel.2016.04.074
  • Ji X, Song D, Wu Y. HPR1000: advanced Pressurized water reactor with active and passive safety. Eng. 2016;2(1):79–87. doi: 10.1016/J.ENG.2016.01.017
  • Baxi CB, Shenoy A, Kostin VI, et al. Evaluation of alternate power conversion unit designs for the GT-MHR. Nucl Eng Des. 2008 Nov;238(11):2995–3001. doi: 10.1016/j.nucengdes.2007.12.021
  • Yan X, Kunitomi K, Nakata T, et al. GTHTR300 design and development. Nucl Eng Des. 2003 Jun;222(2–3):247–262. doi: 10.1016/S0029-5493(03)00030-X
  • Chase MW. NIST-JANAF thermochemical tables. J Phys Chem Ref Data. 1998;9 1361–1362 .
  • Wang J, Gu YH. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor. Nucl Eng Des. 2005 Jul;235(16):1761–1772. doi: 10.1016/j.nucengdes.2005.02.007
  • Ming L, Yang XY, Zhang YJ, et al. Experimental study on performance of helium low pressure compressor of HTR-10GT. Prog Nucl Energy. 2019 Mar;111:156–164. doi: 10.1016/j.pnucene.2018.11.008
  • Mcdonald CF. Helium turbomachinery operating experience from gas turbine power plants and test facilities. Appl Therm Eng. 2012;44:108–142. doi: 10.1016/j.applthermaleng.2012.02.041
  • NO HC, Kim JH, Kim HM. A review of helium gas turbine technology for high-temperature gas-cooled Reactors. Nucl Eng Technol. 2007;39(1):21–30. doi: 10.5516/NET.2007.39.1.021
  • Tian Z, Zheng Q, Malik A, et al. Effect of the specific heat ratio on transonic axial compressor rotor performances. Appl Therm Eng. 2019;148:307–315. doi: 10.1016/j.applthermaleng.2018.11.051
  • Mihayiluofu AИ, Baolisuofu BB, Kalining K. Closed cycle gas turbine Plant. Book of Science Publishing Company; 1964. pp. 39–57.
  • Ke T, Zheng Q. The highly loaded aerodynamic design and performance enhancement of a helium compressor. Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C. Glasgow, UK. June 14–18, 2010. pp. 431-442. ASME. https://doi.org/10.1115/GT2010-23116
  • Ke, T, Zheng, Q. Design and aerodynamic analysis of a highly loaded helium compressor. 239–250. doi:https://doi.org/10.1115/GT2011-46044. ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, June 6–10, 2011, Vancouver, British Columbia, Canada; 2011. Volume 7: Turbomachinery, Parts A, B, and C.
  • Ke T, Zheng Q. Highly loaded aerodynamic design and three dimensional performance enhancement of a HTGR helium compressor. Nucl Eng Des. 2012;249(Aug.):256–267. doi: 10.1016/j.nucengdes.2012.03.029
  • Tian Z, Zheng Q, Jiang B, et al. Research on the design method of highly loaded helium compressor based on the physical properties. J Nucl Sci Technol. 2017;54(8):837–849. doi: 10.1080/00223131.2017.1309303
  • Jiang B, Chen ZL, Chen H, et al. Similarity and cascade flow characteristics of a highly loaded helium compressor. Nucl Eng Des. 2015 May;286:286–296. doi: 10.1016/j.nucengdes.2014.12.039
  • Hu JG, Wang RG, Li RK, et al. Experimental investigation on separation control by slot jet in highly loaded compressor cascade. Proc Inst Mech Eng Part G. 2018 Jul;232(9):1704–1714. doi: 10.1177/0954410017703145
  • Scillitoe AD, Tucker PG, Adami P. Numerical investigation of three-dimensional separation in an axial flow compressor: the influence of freestream turbulence intensity and endwall boundary layer state. J Turbomach ASME. 2017 Feb;139(2):021011. doi: 10.1115/1.4034797
  • Dixon SL, Eng B, Ph D. Bioactive diversity and screening library selection via affinity fingerprinting. J Chem Inf Comput Sci. 1998;38(6):1192–1203. doi: 10.1021/ci980105+
  • Wright PI, Miller DC. Improved compressor performance prediction model. 1992.
  • Dickens T, Day I. The design of highly loaded axial compressors. J Turbomach ASME. 2011 Jul;133(3):031007. doi: 10.1115/1.4001226
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Stud J. 1994;32(8):1598–1605. doi: 10.2514/3.12149
  • Cao Z, Gao X, Liu B. Control mechanisms of endwall profiling and its comparison with bowed blading on flow field and performance of a highly-loaded compressor cascade. Aerosp Sci Technol. 2019;95:105472. doi: 10.1016/j.ast.2019.105472
  • Sanders C, Terstegen M, Jeschke P, et al. Rotor–stator interactions in a 2.5-stage axial compressor—part II: impact of aerodynamic modeling on forced response. J Turbomach Trans ASME. 2019;141(10):101008. doi: 10.1115/1.4043954
  • Tian Z, Wang C, Zheng Q. Investigation of the effects of different working fluids on compressor cascade performance. Appl Sci. 2021;11(5):1989. doi: 10.3390/app11051989

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.