102
Views
0
CrossRef citations to date
0
Altmetric
Article

Analytical studies on effects of wind on dispersion of hydrogen leaked in a partially open space

&
Pages 1135-1154 | Received 15 Jun 2023, Accepted 04 Jan 2024, Published online: 22 Jan 2024

References

  • Director Genera. The Fukushima Daiichi accident, Non-serial Publications. Vienna: IAEA; 2015.
  • Allen LC, John CC, Martin PS, et al. Light water reactor hydrogen manual. Light water reactor hydrogen manual; 1983. ( NUREG/CR-2726).
  • International Atomic Energy Agency. Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants, IAEA-TECDOC-1661. Vienna: IAEA; 2011.
  • Hollis WK, Velarde K, Lashley J, et al. Gas generation from contact of radioactive waste and brine. J Radioanal Nucl Chem. 1998;235(1–2):235–239. doi: 10.1007/BF02385968
  • Liang Z, Sonnenkalb M, Bentaib A, et al. Status report on hydrogen management and related computer codes. OECD/NEA Nuclear Safety Report. NEA/CSNI/R; 2014
  • Yamagishi I, Nagaishi R, Kato C et al. Characterization and storage of radioactive zeolite waste. J Nuclear Sci Tech. 2014;51(7–8):1044–1053. doi: 10.1080/00223131.2014.924446
  • Nagaishi R. Modern radiation chemistry (applications) 26 evolution of water radiolysis studies for measures against post-severe accidents. Radioisotopes. 2017;66(11):601–610. in Japanese. doi: 10.3769/radioisotopes.66.601
  • Terada A, Nagaishi R. Analytical studies on effects of vent size and wind on dispersion of hydrogen leaked in a partially. Nucl Sci Eng. 2023;197(4):647–659. doi: 10.1080/00295639.2022.2126689
  • Matsuura K, Kanayama H, Tsukikawa H, et al. Numerical simulation of leaking hydrogen dispersion behavior in a partially open space. Int J Hydrogen Energy. 2008;33(1):240–247. doi: 10.1016/j.ijhydene.2007.08.028
  • Kanayama H, Tsukikawa H, Ndong-Mefane SB, et al. Finite element simulation of hydrogen dispersion by the analogy of the boussinesq approximation. J Comput Sci Tech. 2008;2(4):643–654. doi: 10.1299/jcst.2.643
  • Agranat V, Cheng Z, Tchouvelev A. CFD modeling of hydrogen releases and dispersion in hydrogen energy station. Proceedings of 15th World Hydrogen Energy Conference; Yokohama, Japan; 2004.
  • Swain MR, Grilliot ES, Swain MN. Risks in curred by hydrogen escaping from containers and conduits. Proceeding of the 1998 US DOE Hydrogen Program Review, NREL/CP-570-25315. Alexandria, Virginia; 1998.
  • Tsukikawa H, Kanayama H, Matsuura K, et al. Unsteady diffusion analysis of leaking hydrogen in a partially open space under natural ventilation. J Hydrogen Energy Sys. 2008;33(3): 28–35. in Japanese.
  • Inoue M, Tsukikawa H, Kanayama H, et al. Experimental study on leaking hydrogen dispersion in a partially open space. Int J Hydrogen Energy. 2008;33(1):32–43. in Japanese. doi: 10.1016/j.ijhydene.2007.08.028
  • Tsukikawa H, Inoue M, Kanayama H, et al. Hydrogen flow simulation in a partially open space with combustion flow method, symposium (Japanese) on combustion. [in Japanese]
  • Fluent 17.2 User’s Guide, ANSYS.Inc. 2017
  • ERCOFTAC special interest group on “quality and trust in industrial CFD”, best practice guidelines. 2000.
  • OECD/NEA. Best practice guidelines for the HSe of CFD in nuclear reactor safety applications. NEA/CSNI/R; 2014. 11.
  • Computational fluid dynamics in ventilation design. REHVA; 2011
  • Guidebook for CFD Predictions of Urban wind environment. Architectural Institute of Japan; 2020 [in Japanese]
  • Lauder BE, Spalding DB. The numerical computation of turbulent flows. Computer Method Appl Mech Eng. 1990;3(2):269–289. doi: 10.1016/0045-7825(74)90029-2
  • Yakhot V, Orszag SA. Renormalization group analysis of turbulence 1 basic theory. J Sci Comput. 1986;1(1):3–51. doi: 10.1007/BF01061452
  • Yakhot V, Orszag SA, Thangram S, et al. Development of turbulence models for shear flows by double expansion technique. Phys Fluids A. 1992;4(7):1510–1520. doi: 10.1063/1.858424
  • Shih TH, Liou WW, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows model development and validation. Comput Fluid. 1995;24(3):227–238. doi: 10.1016/0045-7930(94)00032-T
  • Menter FR. Zonal two-equation k-w turbulence model for aerodynamic flows. AIAA paper; 1993. 1993–2906.
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32(8):1598–1605. doi: 10.2514/3.12149
  • Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. Heat Mass Transf. 2003;4:625–632. New York:Begell House Inc.
  • Yoshihide T, Stathpoulos T. Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmos Environ. 2007;41(37):8091–8099. doi: 10.1016/j.atmosenv.2007.06.054
  • Abe S, Studer E, Ishigaki M, et al. Density stratification breakup by a vertical jet; experimental and numerical investigation on the effect of dynamic change of turbulent Schmidt number. Nucl Eng Des. 2020;368:110785. doi: 10.1016/j.nucengdes.2020.110785

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.