4,109
Views
71
CrossRef citations to date
0
Altmetric
Statistical Developments and Applications

Exploratory Factor Analysis With Small Samples and Missing Data

Pages 637-652 | Received 08 Jun 2016, Published online: 08 Dec 2016

References

  • Allison, P. D. (2003). Missing data techniques for structural equation modeling. Journal of Abnormal Psychology, 112, 545.
  • Ambler, G., Omar, R. Z., & Royston, P. (2007). A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome. Statistical Methods in Medical Research, 16, 277–298.
  • Arrindell, W. A., & van der Ende, J. (1985). An empirical test of the utility of the observations-to-variables ratio in factor and components analysis. Applied Psychological Measurement, 9, 165–178.
  • Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? International Journal of Methods in Psychiatric Research, 20, 40–49.
  • Barnard, J., & Rubin, D. B. (1999). Miscellanea: Small-sample degrees of freedom with multiple imputation. Biometrika, 86, 948–955.
  • Barnes, S. A., Lindborg, S. R., & Seaman, J. W. (2006). Multiple imputation techniques in small sample clinical trials. Statistics in Medicine, 25, 233–245.
  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Statistical Psychology, 3, 77–85.
  • Bentler, P. M., & Yuan, K. H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34, 181–197.
  • Briggs, N. E., & MacCallum, R. C. (2003). Recovery of weak common factors by maximum likelihood and ordinary least squares estimation. Multivariate Behavioral Research, 38, 25–56.
  • Cattell, R. B. (1978). The scientific use of factor analysis in behavioral and life sciences. New York, NY: Plenum.
  • Conway, J. M., & Huffcutt, A. I. (2003). A review and evaluation of exploratory factor analysis practices in organizational research. Organizational Research Methods, 6, 147–168.
  • Cudeck, R., & O'Dell, L. L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475–487.
  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39, 1–38.
  • de Winter, J. C., & Dodou, D. (2012). Factor recovery by principal axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size. Journal of Applied Statistics, 39, 695–710.
  • de Winter, J. C. F., Dodou, D., & Wieringa, P. A. (2009). Exploratory factor analysis with small sample sizes. Multivariate Behavioral Research, 44, 147–181.
  • Enders, C. K. (2001). The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352–370.
  • Enders, C. K. (2004). The impact of missing data on sample reliability estimates: Implications for reliability reporting practices. Educational and Psychological Measurement, 64, 419–436.
  • Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
  • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430–457.
  • Enders, C. K., & Peugh, J. L. (2004). Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural Equation Modeling, 11, 1–19.
  • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.
  • Fan, X., & Fan, X. (2005). Using SAS for Monte Carlo simulation research in SEM. Structural Equation Modeling, 12, 299–333.
  • Fernandez, A. C., Fehon, D. C., Treloar, H., Ng, R., & Sledge, W. H. (2015). Resilience in organ transplantation: An application of the Connor–Davidson Resilience Scale (CD–RISC) with liver transplant candidates. Journal of Personality Assessment, 97, 487–493.
  • Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.
  • Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The applications of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39, 291–314.
  • Gagné, P., & Hancock, G. R. (2006). Measurement model quality, sample size, and solution propriety in confirmatory factor models. Multivariate Behavioral Research, 41, 65–83.
  • Gorsuch, R. L. (1974). Factor analysis. Philadelphia, PA: Saunders.
  • Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80–100.
  • Graham, J. W., & Schafer, J. L. (1999). On the performance of multiple imputation for multivariate data with small sample size. In R. Hoyle (Ed.), Statistical strategies for small sample research (pp. 1–29). Thousand Oaks, CA: Sage.
  • Gu, W., Reddy, H. B., Green, D., Belfi, B., & Einzig, S. (2016). Inconsistent responding in a criminal forensic setting: An evaluation of the VRIN-r and TRIN-r scales of the MMPI–2–RF. Journal of Personality Assessment. Advance online publication. doi:10.1080/00223891.2016.1149483
  • Guilford, J. P. (1954). Psychometric methods. New York, NY: McGraw-Hill.
  • Hair, J. F., Anderson, R. E., Tatham, R. L., & Grablowsky, B. J. (1979). Multivariate data analysis. Tulsa, OK: Pipe Books.
  • Heitjan, D. F., & Little, R. J. (1991). Multiple imputation for the fatal accident reporting system. Applied Statistics, 40, 13–29.
  • Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational and Psychological Measurement, 66, 393–416.
  • Herzog, W., & Boomsma, A. (2009). Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling, 16, 1–27.
  • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185.
  • Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing variables. The American Statistician, 55, 244–254.
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.
  • Jackson, D. L. (2001). Sample size and number of parameter estimates in maximum likelihood confirmatory factor analysis: A Monte Carlo investigation. Structural Equation Modeling, 8, 205–223.
  • Jackson, D. L., Gillaspy, J. A., Jr., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6–23.
  • Jia, F., Moore, E. W. G., Kinai, R., Crowe, K. S., Schoemann, A. M., & Little, T. D. (2014). Planned missing data designs with small sample sizes: How small is too small? International Journal of Behavioral Development, 38, 435–452.
  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.
  • Kenny, D. A., & McCoach, D. B. (2003). Effect of the number of variables on measures of fit in structural equation modeling. Structural Equation Modeling, 10, 333–351.
  • King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science data: An alternative algorithm for multiple imputation. American Political Science Association, 95, 49–69.
  • Kristman, V. L., Manno, M., & Côté, P. (2005). Methods to account for attrition in longitudinal data: Do they work? A simulation study. European Journal of Epidemiology, 20, 657–662.
  • Ledesma, R. D., & Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis. Practical Assessment, Research & Evaluation, 12, 1–11.
  • Lee, K. J., & Carlin, J. B. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology, 171, 624–632.
  • Little, R. J. (1988). Missing data in large surveys. Journal of Business and Economic Statistics, 6, 287–301.
  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99.
  • McNeish, D. (2015). Using lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences. Multivariate Behavioral Research, 50, 471–484.
  • McNeish, D. (2016). Missing data methods for arbitrary missingness with small samples. Journal of Applied Statistics. Advance online publication. doi:10.1080/02664763.2016.1158246
  • McNeish, D., & Harring, J. R. (2016). Correcting model fit criteria for small sample latent growth models with incomplete data. Educational and Psychological Measurement. Advance online publication. doi:10.1177/0013164416661824
  • Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5, 159–168.
  • Nevitt, J., & Hancock, G. R. (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39, 439–478.
  • Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556.
  • Putnam, S. P., Helbig, A. L., Gartstein, M. A., Rothbart, M. K., & Leerkes, E. (2014). Development and assessment of short and very short forms of the Infant Behavior Questionnaire–Revised. Journal of Personality Assessment, 96, 445–458.
  • Reiter, J. P. (2007). Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data. Biometrika, 94, 502–508.
  • Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354–373.
  • Roth, P. L., & Switzer, F. S. (1995). A Monte Carlo analysis of missing data techniques in a HRM setting. Journal of Management, 21, 1003–1023.
  • Roth, P. L., Switzer, F. S., & Switzer, D. M. (1999). Missing data in multiple item scales: A Monte Carlo analysis of missing data techniques. Organizational Research Methods, 2, 211–232.
  • Rovine, M. J. (1994). Latent variable models and missing data analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 181–225). Thousand Oaks, CA: Sage.
  • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
  • Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality and Social Psychology Bulletin, 28, 1629–1646.
  • Savalei, V., & Bentler, P. M. (2009). A two-stage approach to missing data: Theory and application to auxiliary variables. Structural Equation Modeling, 16, 477–497.
  • Savalei, V., & Falk, C. F. (2014). Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data. Structural Equation Modeling, 21, 280–302.
  • Schenker, N., & Taylor, J. M. (1996). Partially parametric techniques for multiple imputation. Computational Statistics & Data Analysis, 22, 425–446.
  • Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling Psychology, 57, 1–10.
  • Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., … Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ, 338, b2393.
  • Swain, A. J. (1975). Analysis of parametric structures for variance matrices (Unpublished doctoral dissertation). University of Adelaide, Australia.
  • Tan, M., Fang, H. B., Tian, G. L., & Wei, G. (2005). Testing multivariate normality in incomplete data of small sample size. Journal of Multivariate Analysis, 93, 164–179.
  • van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16, 219–242.
  • van Buuren, S., Boshuizen, H. C., & Knook, D. L. (1999). Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine, 18, 681–694.
  • van Buuren, S., Brand, J. P., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 1049–1064.
  • van Praag, B. M. S., Dijkstra, T. K., and Van Velzen, J. (1985). Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem. Psychometrika, 50, 25–36.
  • Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321–327.
  • Velicer, W. F., & Fava, J. L. (1998). Affects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 231–251.
  • Vink, G., Frank, L. E., Pannekoek, J., & van Buuren, S. (2014). Predictive mean matching imputation of semicontinuous variables. Statistica Neerlandica, 68, 61–90.
  • von Hippel, P. T. (2016). New confidence intervals and bias comparisons show that maximum likelihood can beat multiple imputation in small samples. Structural Equation Modeling, 23, 422–437. doi:10.1080/10705511.2015.1047931
  • White, I. R., & Carlin, J. B. (2010). Bias and efficiency of multiple imputation compared with complete‐case analysis for missing covariate values. Statistics in Medicine, 29, 2920–2931.
  • White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30, 377–399.
  • Yuan, K.-H. (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40, 115–148.
  • Yuan, K. H., & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767–774.
  • Yuan, K. H., & Bentler, P. M. (1999). F tests for mean and covariance structure analysis. Journal of Educational and Behavioral Statistics, 24, 225–243.
  • Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30, 167–202.
  • Yuan, K. H., Tong, X., & Zhang, Z. (2015). Bias and efficiency for SEM with missing data and auxiliary variables: Two-stage robust method versus two-stage ML. Structural Equation Modeling, 22, 178–192.
  • Yuan, K.-H., & Zhang, Z. (2012). Robust structural equation modeling with missing data and auxiliary variables. Psychometrika, 77, 803–826.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.