Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 112, 2014 - Issue 24
500
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Revisiting the ‘cis-effect’ in 1,2-difluoro derivatives of ethylene and diazene using ab initio multireference methods

, , , &
Pages 3206-3224 | Received 20 May 2014, Accepted 22 Jun 2014, Published online: 16 Jul 2014

References

  • V.W. Laurie and D.T. Pence, J. Chem. Phys. 38, 2693 (1963).
  • M.D. Harmony, V.W. Laurie, R.L. Kuczkowski, R.H. Schwendeman, D.A. Ramsay, F.J. Lovas, W.J. Lafferty, and A.G. Maki, J. Phys. Chem. Ref. Data, 8, 619 (1979).
  • E.J.M. van Schaick, F.C. Mijlhoff, G. Renes, and H.J. Geise, J. Mol. Struct. 21, 17 (1974).
  • J.L. Carlos, R.R. Karl, and S.H. Bauer, J. Chem. Soc., Faraday Trans. 2, 177 (1974).
  • J.S. Binkley and J.A. Pople, Chem. Phys. Lett. 45, 197 (1977); R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople,; J. Chem. Phys. 72, 650 (1980).
  • N.C. Craig, O.P. Abiog, B. Hu, S.C. Stone, W.J. Lafferty, and L. Xu, J. Phys. Chem. 110, 5310 (1996).
  • N.C. Craig, D.W. Brandon, S.C. Stone, and W.J. Lafferty, J. Phys. Chem. 96, 1598 (1992).
  • J.T. Waldron and W.H. Snyder, J. Am. Chem. Soc. 95, 549 (1973).
  • K.B. Wiberg, M.A. Murcko, K.E. Laidig, and P.J. MacDougall, J. Phys. Chem. 94, 6956 (1990); K.B. Wiberg, C.M. Hadad, C.M.Breneman, K.E. Laidig, M.A. Murcko, and T.J. LePage,; Science 252, 1266 (1991).
  • R. Kanakaraju, K. Senthilkumar, and P. Kolandaivel, J. Mol. Struct. 589, 95 (2002).
  • J.B.P. da Silva and M.N. Ramos, J. Braz. Chem. Soc. 15, 43 (2004).
  • T. Yamamoto and S. Tomoda, Chem. Lett. 26, 1069 (1997); T. Yamamoto, D. Kaneno, and S. Tomoda, ibid. 34, 1190 (2005).
  • R.K. Chaudhuri, J.R. Hammond, K.F. Freed, S. Chattopadhyay, and U.S. Mahapatra, J. Chem. Phys. 129, 064101 (2008).
  • D. Feller, N.C. Craig, P. Groner, and D.C. McKean, J. Phys. Chem. A 115, 94 (2011).
  • D. Feller, K.A. Peterson, and D.A. Dixon, J. Phys. Chem. A 115, 1440 (2011).
  • S. Jenkins, S.R. Kirk, C. Rong, and D. Yin, Mol. Phys. 6, 793 (2013).
  • N.C. Craig and J. Overend, J. Chem. Phys. 51, 1127 (1969).
  • T. Yamamoto, D. Kaneno, and S. Tomoda, J. Org. Chem. 73, 5429 (2008).
  • J.R. Durig, J. Liu, T.S. Little, and V.F. Kalasinsky, J. Phys. Chem. 96, 8224 (1992).
  • K. Wittel and H. Bock, Chem. Ber. 107, 317 (1974); T.M. Connor and K.A. McLauchlan,; J. Phys. Chem. 69, 1888 (1965).
  • R.C. Bingham, J. Am. Chem. Soc. 98(2), 535 (1976).
  • R. Ditchfield and P.D. Ellis, Chem. Phys. Lett. 17, 342 (1972).
  • C. Puzzarini, G. Cazzoli, A. Gambi, and J. Gauss, J. Chem. Phys. 125, 054307 (2006).
  • O. Engkvist, G. Karlström, and P.O. Widmark, Chem. Phys. Lett. 265, 19 (1997).
  • H. Hu, M. Gong, A. Tian, and N. Wong, Int. J. Quantum Chem. 91, 675 (2003).
  • Z.S. Mourão and A. Melo, J. Mol. Struct. 946, 7 (2010).
  • D. Cremer, Chem. Phys. Lett. 81, 482 (1981).
  • U.S. Mahapatra, B. Datta, and D. Mukherjee, Mol. Phys. 94, 157 (1998); J. Chem. Phys. 110, 6171 (1999).
  • F.A. Evangelista, W.D. Allen, and H.F. Schaefer III, J. Chem. Phys. 125, 154113 (2006), F.A. Evangelista, E. Prochnow, J. Gauss, and H.F. Schaefer III, ibid. 132, 074107 (2010).
  • F.A. Evangelista, W.D. Allen, and H.F. Schaefer III, J. Chem. Phys. 127, 024102 (2007).
  • S. Chattopadhyay, P. Ghosh, and U.S. Mahapatra, J. Phys. B 37, 495 (2004).
  • K. Bhaskaran-Nair, O. Demel, and J. Pittner, J. Chem. Phys. 129, 184105 (2008); 132, 154105 (2010); B.K. Carpenter, J. Pittner, and L. Veis, J. Phys. Chem. A 113, 10557 (2009).
  • X. Li and J. Paldus, J. Chem. Phys. 129, 174101 (2008); 131, 114103 (2009).
  • X. Li and J. Paldus, Chem. Phys. Lett. 496, 183 (2010); J. Chem. Phys. 133, 184106 (2010).
  • P.R. Schreiner, H.P. Reisenauer, F.C. Pickard IV, A.C. Simmonett, W.D. Allen, E. Mátyus, and A.G. Császár, Nature 453, 906 (2008).
  • T. Saito, S. Nishihara, S. Yamanaka, Y. Kitagawa, T. Kawakami, M. Okumura, and K. Yamaguchi, Mol. Phys. 108, 2533 (2010).
  • E. Prochnow, F.A. Evangelista, H.F. Schaefer III, and W.D. Schaefer III, and J. Gauss, J. Chem. Phys. 131, 064109 (2009).
  • S. Das, D. Mukherjee, and M. Kállay, J. Chem. Phys. 132, 074103 (2010); 132, 234110 (2010); See also http://www.mrcc.hu/.
  • S. Das, M. Kállay, and D. Mukherjee, Chem. Phys. 392, 83 (2012).
  • O. Demel, K. Bhaskaran-Nair, and J. Pittner, J. Chem. Phys. 133, 134106 (2010); K. Bhaskaran-Nair, O. Demel, J. Šmydke, and J. Pittner, ibid. 134, 154106 (2011).
  • U.S. Mahapatra and S. Chattopadhyay, J. Phys. B 44, 105102 (2011).
  • P. Čársky, J. Paldus, and J. Pittner, editors (Series editor J. Leszcynski), Recent Progress in Coupled Cluster Methods: Theory and Applications (Challenges and Advances in Computational Chemistry and Physics, Vol. 11) (Springer, Berlin, 2010); A. Köhn, M. Hanauer, L.A. Mück, T.-C. Jagau, and J. Gauss, WIREs. Comput. Mol. Sci. 3, 176 (2013). doi:10.1002/wcms.1120.
  • G. Hose and U. Kaldor, J. Phys. B 12, 3827 (1979); K. Jankowski, J. Paldus, I. Grabowski, and K. Kowalski, J. Chem. Phys. 97, 7600 (1992); J. Paldus, P. Piecuch, L. Pylypow, and B. Jeziorski, Phys. Rev. A 47, 2738 (1993); P. Piecuch and J. Paldus, ibid. 49, 3479 (1993); J. Paldus and X. Li, Adv. Chem. Phys. 110, 1 (1999).
  • K. Kowalski and P. Piecuch, Phys. Rev. A 61, 052506 (2000); Int. J. Quantum Chem. 80, 757 (2000).
  • Convergence problem due to the intruder effects are inevitable from the theoretical standpoint of perturbation theory. Intruder effects emerge when an excited determinant/configuration possesses a similar energy as an electronic state within the model space [43]. The conventional multireference perturbation theories are extremely susceptible to such types of situations, stemming out of small energy denominators in the perturbation series, that eventually lead to spurious results obtained from such calculations. It is worth mentioning that the MRCC theories are inextricably linked with structure of the many-body perturbation theory. The generalised Bloch equation-based MRCC methods, on the other hand, become prone to the intruder solution problem as a result of the polynomial nature of the amplitude determining equations originating from the exponential ansatz for the wavefunction and of the inherent non-linear nature of the Bloch equation. Actually, traditional multireference theory is designed to describe a manifold of states. As the incorporation of the dynamical correlation is switched on the relative disposition of the model space states and the states outside the reference space may change in such a way that convergence of the perturbation series is impaired or even destroyed. The primary essence of developing a multireference theory is to work with a model space that is as small as possible, and yet retain the substantial correlation and effects that shape the chemistry of a particular species. Any suitable electronic structure method, designed to tackle ground and excited states of arbitrary complexity and generality, should be free from such effects. One way to mitigate the intruder state problem is to expand the model space; however, this leads to an increase in the computational effort. A good choice for this is being the state-specific methodology, where a certain definite state of interest of the effective Hamiltonian is focused upon (remaining states are physically unacceptable). In most occasions, the effect of the intruder state(s) becomes prominent in regions away from the equilibrium geometry, and successful handling of this issue becomes crucial in influencing the accuracy of the predicted energies.
  • J.M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F.A. Evangelista, J.T. Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams, N.J. Russ, M.L. Leininger, C.L. Janssen, E.T. Seidl, W.D. Allen, H.F. Schaefer, R.A. King, E.F. Valeev, C.D. Sherrill, and T.D. Crawford, WIREs Comput. Mol. Sci. 2, 556 (2012).
  • D. Pahari, S. Chattopadhyay, S. Das, and D. Mukherjee, Chem. Phys. Lett. 381, 223 (2003).
  • D.C. McKean, M.M. Law, P. Groner, A.R. Conrad, M.J. Tubergen, D. Feller, M.C. Moore, and N.C. Craig, J. Phys Chem. A 114, 9309 (2010).
  • F.C. Mijlhoff, G.H. Renes, K. Kohata, K. Oyanagi, and K. Kutchitsu, J. Mol. Struct. 39, 241 (1977).
  • T.B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).
  • N.C. Craig, K.L. Petersen, and D.C. McKean, J. Phys. Chem. A 106, 6358 (2002).
  • N.C. Craig, P. Groner, D.C. McKean, and M.J. Tubergen, Int. J. Quantum Chem. 95, 837 (2003).
  • N.C. Craig, P. Groner, and D.C. McKean, J. Phys. Chem. A, 110, 7461 (2006).
  • R.O. Kagel, D.L. Powell, J. Overend, M.N. Ramos, A.B. M.S. Bassi, and R.E. Bruns, J. Chem. Phys. 77, 1099 (1982).
  • T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated, Vol. I (National Bureau of Standards, Washington, DC, 1972).
  • G. Rauhut, G. Knizia, and H.-J. Werner, J. Chem. Phys. 130, 054105 (2009).
  • N.C. Craig, A. Chen, K.H. Suh, S. Klee, G. Mellau, B.P. Winnewiser, and M. Winnewisser, J. Phys. Chem. A 101, 9302 (1997).
  • T. Hrenar, H.-J. Werner, and G. Rauhut, J. Chem. Phys. 126, 134108 (2007).
  • D.C. McKean, B. van der Veken, W. Herrebout, M.M. Law, M.J. Brenner, D.J. Nemchick, and N.C. Craig, J. Phys. Chem. A 114, 5728 (2010).
  • S.V. Krasnoshchekov, N.C. Craig, and N.F. Stepanov, J. Phys. Chem. A 117, 3041 (2013).
  • N.C. Craig, L.G. Piper, and V.L. Wheeler, J. Phys. Chem. 75, 1453 (1971).
  • G.T. Armstrong and S. Marantz, J. Chem. Phys. 38, 169 (1963).
  • N.C. Craig, L.G. Piper, and V.L. Wheeler, J. Phys. Chem. 75, 1453 (1971).
  • S. Wolfe, Acc. Chem. Res. 5, 102 (1972).
  • N.D. Epiotis, R.L. Yates, J.R. Larson, C.R. Kirmaier, and F. Bernardi, J. Am. Chem. Soc. 99, 8379 (1977).
  • K. Nordhoff and E. Anders, J. Org. Chem. 64, 7485 (1999).
  • T.J. Lee, J.E. Rice, G.E. Scuseria, H.F. Schaefer III, Theor. Chem. Acta 75, 81 (1989).
  • B.S. Jursic, Int. J. Quantum Chem. 57, 213 (1996).
  • R.K. Bohn and S.H. Bauer, Inorg. Chem. 6, 309 (1967).
  • R.K. Chaudhuri, K.F. Freed, S. Chattopadhyay, and U.S. Mahapatra, J. Chem. Phys. 128, 144304 (2008); U.S. Mahapatra and S. Chattopadhyay, ibid. 134, 044113 (2011); U.S. Mahapatra, S. Chattopadhyay, and R.K. Chaudhuri, J. Comput. Chem. 32, 325 (2011).
  • P. Mach, J. Mášik, J. Urban, and I. Hubǎc, Mol. Phys. 94, 173 (1998); J.M.L. Martin and P.R. Taylor, ibid. 96, 681 (1999).
  • K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold Co., Princeton, 1979).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.