Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 114, 2016 - Issue 7-8: Special Issue in honour of Andreas Savin
1,184
Views
9
CrossRef citations to date
0
Altmetric
Development and Application of Quantum-Chemistry Interpretative Methods

Transferable atoms: an intra-atomic perspective through the study of homogeneous oligopeptides

& ORCID Icon
Pages 1304-1316 | Received 05 Oct 2015, Accepted 01 Nov 2015, Published online: 11 Dec 2015

References

  • P.L. Ayers, R.J. Boyd, P. Bultinck, M. Caffarel; R. Carbó-Dorca, M. Causá, J. Cioslowski, J. Contreras-Garcia, D.L. Cooper, P. Coppens, C. Gatti, S. Grabowsky, P. Lazzeretti, P. Macchi, A.M. Pendás, P.L.A. Popelier, K. Ruedenberg, H. Rzepa, A. Savin, A. Sax, W.E.H. Schwarz, S. Shahbazian, S. Silvi, M. Solà and V. Tsirelson, Six questions on topology in theoretical chemistry. Comput. Theor. Chem. 1053, 2 (2015).
  • R.F.W. Bader, S.G. Anderson and A.J. Duke, Quantum Topology of Molecular Charge Distributions. J. Am. Chem. Soc. 101, 1389(1979).
  • R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford, Great Britain, 1990).
  • P.L.A. Popelier and É.A.G. Brémond, Geometrically faithful homeomorphisms between the electron density and the bare nuclear potential. Int. J. Quant. Chem. 109, 2542 (2009).
  • P.L.A. Popelier, The Quantum Theory of Atoms in Molecules, in The Nature of the Chemical Bond Revisited, edited by G. Frenking and S., Shaik (Wiley-VCH, 2014), Chapter 8, pp. 271–308.
  • M.A. Blanco, A.M. Pendas and E. Francisco, Interacting Quantum Atoms: A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules. J. Chem. Theor. Comput. 1, 1096 (2005).
  • P.L.A. Popelier, A generic force field based on quantum chemical topology, in Modern Charge-Density Analysis, edited by C. Gatti and P. Macchi (Springer, Germany, 2012), Vol. 14, pp. 505.
  • P.L.A. Popelier, Quantum Chemical Topology: Knowledgeable Atoms in Peptides. AIP Conf. Proc. 1456, 261 (2012).
  • A. Vila and R.A. Mosquera, Transferability in alkyl monoethers. II Methyl and methylene fragments. J. Chem. Phys. 115, 1264 (2001).
  • S. Cardamone, T.J. Hughes and P.L.A. Popelier, Multipolar Electrostatics. Phys. Chem. Chem. Phys. 16, 10367 (2014).
  • P.L.A. Popelier and F.M. Aicken, Atomic Properties of Amino Acids: computed Atom Types as a Guide for future Force Field Design. ChemPhysChem 4, 824 (2003).
  • P.L.A. Popelier, M. Devereux and M. Rafat, The quantum topological electrostatic potential as a probe for functional group transferability. Acta Cryst. A60, 427 (2004).
  • M. Rafat, M. Shaik and P.L.A. Popelier, Transferability of quantum topological atoms in terms of electrostatic interaction energy. J. Phys. Chem. A. 110, 13578 (2006).
  • C.H. Faerman and S.L.A. Price, Transferable Distributed Multipole Model For the Electrostatic Interactions of Peptides and Amides. J. Am. Chem. Soc. 112, 4915 (1990).
  • W.T.M. Mooij, F.B. van Duijneveldt, J.G.C.M. van Duijneveldt-vande Rijdt and B.P. van Eijck, Transferable ab Initio Intermolecular Potentials. 1. Derivation from Methanol Dimer and Trimer Calculations. J. Phys. Chem. A. 103, 9872 (1999).
  • K.E. Laidig, General Expression For the Spatial Partitioning of the Moments and Multipole Moments of Molecular Charge-Distributions. J. Phys. Chem. 97, 12760 (1993).
  • C.E. Whitehead, C.M. Breneman, N. Sukumar and M.D. Ryan, Transferable atom equivalent multicentered multipole expansion method. J. Comp. Chem. 24, 512 (2003).
  • C.M. Breneman, T.R. Thompson, M. Rhem and M. Dung, Electron density modeling of large systems using the transferable atom equivalent method. Comput. Chem. 19, 161 (1995).
  • M. Woińska and P.M. Dominiak, Transferability of Atomic Multipoles in Amino Acids and Peptides for Various Density Partitions. J. Phys. Chem. A 117, 1535 (2011).
  • S. Grabowsky, R. Kalinowski, M. Weber, D. Foerster, P. Carsten and P. Luger, Transferability and reproducibility in electron density studies – bond-topological and atomic properties of tripeptides of the type L-alanyl-X-Lalanine. Acta Cryst. B65, 488 (2009).
  • Y. Yuan, M.J.L. Mills, P.L.A. Popelier and F. Jensen, Comprehensive Analysis of Energy Minima of the 20 Natural Amino Acids. J. Phys. Chem. A. 118, 7876 (2014).
  • P.L.A. Popelier, QCTFF: On the Construction of a Novel Protein Force Field. Int. J. Quant. Chem. 115, 1005 (2015).
  • P.L.A. Popelier, New insights in atom-atom interactions for future drug design. Current Topics in Med. Chem. 12, 1924 (2012).
  • P.L.A. Popelier and D.S. Kosov, Atom-atom partitioning of intramolecular and intermolecular Coulomb energy. J. Chem. Phys. 114, 6539 (2001).
  • R.F.W. Bader, Beddall P.M. Virial, Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties. J. Chem. Phys. 56, 3320 (1972).
  • M. Rafat and P.L.A. Popelier, Long range behaviour of high-rank topological multipole moments. J. Comput. Chem. 28, 832 (2007).
  • M. Rafat and P.L.A. Popelier, A convergent multipole expansion for 1,3 and 1,4 Coulomb interactions. J. Chem. Phys. 124, 144102-1-7 (2006).
  • C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning (The MIT Press, Cambridge, MA, 2006).
  • G. Matheron, Principles of Geostatistics. Econ. Geol 58, 21 (1963).
  • M.J.L. Mills and P.L.A. Popelier, Intramolecular polarisable multipolar electrostatics from the machine learning method Kriging. Comput. Theor. Chem. 975, 42 (2011).
  • M.J.L. Mills and P.L.A. Popelier, Polarisable multipolar electrostatics from the machine learning method Kriging: an application to alanine. Theor. Chem. Acc. 131, 1137 (2012).
  • C.M. Handley, G.I. Hawe, D.B. Kell and P.L.A. Popelier, Optimal Construction of a Fast and Accurate Polarisable Water Potential based on Multipole Moments trained by Machine Learning. Phys. Chem. Chem. Phys. 11, 6365 (2009).
  • Y. Yuan, M. Mills and P.L.A. Popelier, Multipolar electrostatics based on the Kriging machine learning method: an application to serine. J. Mol. Model 20, 20 (2014).
  • T. Fletcher, S.J. Davie and P.L.A. Popelier, Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning. J. Chem. Theory Comput. 10, 3708 (2014).
  • S.M. Kandathil, T.L. Fletcher, Y. Yuan, J. Knowles and P.L.A. Popelier, Accuracy and Tractability of a Kriging Model of Intramolecular Polarizable Multipolar Electrostatics and Its Application to Histidine. J. Comput. Chem. 34, 1850 (2013).
  • M. Rafat and P.L.A. Popelier, Topological atom-atom partitioning of molecular exchange energy and its multipolar convergence, in Quantum Theory of Atoms in Molecules, edited by C.F. Matta and R.J. Boyd (Wiley-VCH, Weinheim, Germany, 2007), Vol. 5, pp. 121–140.
  • M. Garcia-Revilla, E. Francisco, P.L.A. Popelier and A.M. Martin-Pendas, Domain-averaged exchange correlation energies as a physical underpinning for chemical graphs. ChemPhysChem. 14, 1211 (2013).
  • R. Chávez-Calvillo, M. García-Revilla, E. Francisco, A. Martín Pendás and T. Rocha-Rinza, Dynamical correlation within the Interacting Quantum Atoms method through coupled cluster theory. Comput. Theor. Chem. 1053, 90 (2015).
  • T.L. Fletcher, S.M. Kandathil and P.L.A. Popelier, The prediction of atomic kinetic energies from coordinates of surrounding atoms using kriging machine learning. Theor. Chem. Acc. 133, 1499:1 (2014).
  • Y. Yuan, M.J.L. Mills and P.L.A. Popelier, Multipolar Electrostatics for Proteins: Atom-Atom Electrostatic Energies in Crambin. J. Comp. Chem. 35, 343 (2014).
  • M. Rafat and P.L.A. Popelier, The electrostatic potential generated by topological atoms. Part II: inverse multipole moments. J. Chem. Phys. 123, 204103-1,7 (2005).
  • M. Rafat and P.L.A. Popelier, Atom-atom partitioning of total (super)molecular energy: the hidden terms of classical force fields. J. Comput. Chem. 28, 292 (2007).
  • L. Joubert and P.L.A. Popelier, The prediction of energies and geometries of hydrogen bonded DNA base-pairs via a topological electrostatic potential. Phys. Chem. Chem. Phys. 4, 4353 (2002).
  • L. Joubert and P.L.A. Popelier, Improved Convergence of the ‘Atoms in Molecules’ Multipole Expansion of Electrostatic Interaction. Mol. Phys. 100, 3357 (2002).
  • K. Eskandari and C. Van Alsenoy, Hydrogen–Hydrogen Interaction in Planar Biphenyl: A Theoretical Study Based on the Interacting Quantum Atoms and Hirshfeld Atomic Energy Partitioning Methods. J. Comput. Chem. 35, 1883 (2014).
  • J. Dillen, Congested Molecules. Where is the Steric Repulsion? An Analysis of the Electron Density by the Method of Interacting Quantum Atoms. Int. J. Quant. Chem. 113, 2143 (2013).
  • A.M. Pendás, M.A. Blanco and E. Francisco, The nature of the hydrogen bond: A synthesis from the interacting quantum atoms picture. J. Chem. Phys. 125, 184112-1-20 (2006).
  • A.M. Pendas, E. Francisco and M.A. Blanco, Binding Energies of First Row Diatomics in the Light of the Interacting Quantum Atoms Approach. J. Phys. Chem. A 110, 12864 (2006).
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford, CT, 2009).
  • T.A. Keith, AIMAll (TK Gristmill Software, Overland Park, KS, 2014; aim.tkgristmill.com).
  • T.A. Keith, AIMAll (Version 13.10.19) (TK Gristmill Software, Overland Park, KS, 2013; http://aim.tkgristmill.com).
  • T.A. Keith, AIMAll. 14.11.23 (TK Gristmill Software, Overland Park, KS, 2014; http://aim.tkgristmill.com).
  • F.W. Biegler-Koenig, R.F.W. Bader and T.H. Tang, Calculation of the Average Properties of Atoms in Molecules. J. Comp. Chem. 1982, 3, 317.
  • M. Rafat and P.L.A. Popelier, Visualisation and integration of quantum topological atoms by spatial discretisation into finite elements. J. Comput. Chem. 28, 2602 (2007).
  • M. Rafat, M. Devereux and P.L.A. Popelier, Rendering of quantum topological atoms and bonds. J. Mol. Graphics Modell. 24, 111 (2005).
  • W. Yu, Z. Wu, H. Chen, X. Liu, A.D. MacKerell J. and Z. Lin, Comprehensive Conformational Studies of Five Tripeptides and a Deduced Method for Efficient Determinations of Peptide Structures. J. Phys. Chem. B 116, 2269 (2012).
  • H. Lu, Y. Wang, Y. Wu, P. Yang, L. Li and S. Li, Hydrogen-bond network and local structure of liquid water: An atoms-in-molecules perspective. J. Chem Phys 129, 124512 (2008).
  • J.M. Guevara-Vela, R. Chavez-Calvillo, M. Garcia-Revilla, J. Hernandez-Trujillo, O. Christiansen, E. Francisco, A.M. Pendas and T. Rocha-Rinza, Hydrogen-Bond Cooperative Effects in Small Cyclic Water Clusters as Revealed by the Interacting Quantum Atoms Approach. Chem. Eur. J. 19, 14304 (2013).
  • F.M. Aicken and P.L.A. Popelier, Atomic properties of selected biomolecules. Part 1. The interpretation of atomic integration errors. Can. J. Chem. 78, 415 (2000).