Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 117, 2019 - Issue 9-12: Dieter Cremer Memorial Issue
262
Views
6
CrossRef citations to date
0
Altmetric
Dieter Cremer Memorial

Complexes between H2 and neutral oxyacid beryllium derivatives. The role of angular strain

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1142-1150 | Received 27 Jul 2018, Accepted 31 Aug 2018, Published online: 16 Sep 2018

References

  • P. Hobza and K. Müller-Dethlefs, Non-Covalent Interactions. Theory and Experiment (RSC, Cambridge, UK, 2010).
  • A.M. Maharramov, K.T. Mahmudov, M.N. Kopylovich and A.J.L. Pombeiro, Non-Covalent Interactions in the Synthesis and Design of New Compounds (John Wiley & Sons, Hoboken, NJ, 2016).
  • A. Otero de la Roza and G.A. DiLabio, Non-Covalent Interactions in Quantum Chemistry and Physics: Theory and Applications (Elsevier, Amsterdam, 2017).
  • V. Barbier and O.R.P. David, Non-Covalent Interactions in Organocatalysis (Elsevier, Amsterdam, 2018).
  • G.C. Pimentel and A.L. McClelland, The Hydrogen Bond (W.H. Freeman and Co., San Francisco, 1960).
  • L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, NY, 1960).
  • T.S. Moore and T.F. Winmill, J. Chem. Soc. 101, 1635–1676 (1912). doi: 10.1039/CT9120101635
  • W.L. Zou, X.L. Zhang, H.M. Dai, H. Yan, D. Cremer and E. Kraka, J. Organomet. Chem. 865, 114–127 (2018). doi: 10.1016/j.jorganchem.2018.02.014
  • G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, Chem. Rev. 116, 2478–2601 (2016). doi: 10.1021/acs.chemrev.5b00484
  • J.M. Dumas, H. Peurichard and M. Gomel, J. Chem. Res.-S, 54–55 (1978).
  • T. Clark, M. Hennemann, J.S. Murray and P. Politzer, J. Mol. Model.. 13, 291–296 (2007). doi: 10.1007/s00894-006-0130-2
  • V. Oliveira and D. Cremer, Chem. Phys. Lett. 681, 56–63 (2017). doi: 10.1016/j.cplett.2017.05.045
  • R. Custelcean and J.E. Jackson, Chem. Rev. 101, 1963–1980 (2001). doi: 10.1021/cr000021b
  • P. Sanz, O. Mó and M. Yáñez, Chem. Eur. J. 8, 3999–4007 (2002); b) P. Sanz, O. Mó and M. Yáñez, New J. Chem. 26, 1747–1752 (2002). doi: 10.1002/1521-3765(20020902)8:17<3999::AID-CHEM3999>3.0.CO;2-M
  • W. Wang, B. Ji and Y. Zhang, J. Phys. Chem. A. 113, 8132–8135 (2009). doi: 10.1021/jp904128b
  • A. Bauza, T.J. Mooibroek and A. Frontera, Angew. Chem.-Int. Edit. 52, 12317–12321 (2013). doi: 10.1002/anie.201306501
  • I. Alkorta, G. Sanchez-Sanz, J. Elguero and J.E. Del Bene, J. Chem. Theory Comput. 8, 2320–2327 (2012). doi: 10.1021/ct300399y
  • M. Yáñez, P. Sanz, O. Mó, I. Alkorta and J. Elguero, J. Chem. Theor. Comput. 5, 2763–2771 (2009). doi: 10.1021/ct900364y
  • G. Frenking, S. Dapprich, K.F. Kohler, W. Koch and J.R. Collins, Mol. Phys. 89, 1245–1263 (1996). doi: 10.1080/00268979609482538
  • M.R. Buchner, M. Muller and S.S. Rudel, Angew. Chem.-Int. Edit. 56, 1130–1134 (2017). doi: 10.1002/anie.201610956
  • S.J. Grabowski, Chemphyschem. 19, 1830–1840 (2018). doi: 10.1002/cphc.201800274
  • a) O. Mó, M. Yáñez, I. Alkorta and J. Elguero, J. Mol. Model. 19, 4139–4145 (2013); b) M. Yáñez, O. Mó, I. Alkorta and J. Elguero, Chem. Eur. J. 35, 11637–11643 (2013); c) O. Mó, M. Yáñez, I. Alkorta and J. Elguero, Mol. Phys. 112, 592–600 (2014). doi: 10.1007/s00894-012-1682-y
  • M.M. Montero-Campillo, P. Sanz, O. Mó, M. Yáñez, I. Alkorta and J. Elguero, Phys. Chem. Chem. Phys. 20, 2413–2420 (2018). doi: 10.1039/C7CP07891A
  • O. Brea, I. Alkorta, O. Mó, M. Yáñez, J. Elguero and I. Corral, Angew. Chem. Eng. Int. Ed. 55, 8736–8739 (2016). doi: 10.1002/anie.201603690
  • O. Brea, O. Mó, M. Yáñez, I. Alkorta and J. Elguero, Chem. Commun. 52, 9656–9659 (2016). doi: 10.1039/C6CC04350J
  • I. Alkorta, M.M. Montero-Campillo, J. Elguero, M. Yáñez and O. Mó, ChemPhysChem 19, 1068–1074 (2018). doi: 10.1002/cphc.201701240
  • O. Brea, I. Corral, O. Mó, M. Yáñez, I. Alkorta and J. Elguero, Chem. Eur. J. 22, 18322–18325 (2016). doi: 10.1002/chem.201604325
  • M.M. Montero-Campillo, I. Corral, O. Mó, M. Yáñez, I. Alkorta and J. Elguero, Phys. Chem. Chem. Phys. 19, 23052–23059 (2017). doi: 10.1039/C7CP03664G
  • O. Brea, O. Mó, M. Yáñez, M.M. Montero-Campillo, I. Alkorta and J. Elguero, J. Mol. Mod. 24, 16 (2018). doi: 10.1007/s00894-017-3551-1
  • Q. Bian, Z.H. Yang, Y. Wang, C. Cao and S.L. Pan, Sci. Rep. 6, 9 (2016). doi: 10.1038/s41598-016-0002-7
  • B.L. Scott, T.M. McCleskey, A. Chaudhary, E. Hong-Geller and S. Gnanakaran, Chem. Comm 25, 2837–2847 (2008). doi: 10.1039/b718746g
  • Q.N. Zhang, M.H. Chen, M.F. Zhou, D.M. Andrada and G. Frenking, J. Phys. Chem. A. 119, 2543–2552 (2015). doi: 10.1021/jp509006u
  • R. Saha, S. Pan, G. Merino and P.K. Chattaraj, J. Phys. Chem. A. 119, 6746–6752 (2015). doi: 10.1021/acs.jpca.5b03888
  • S. Pan, M. Ghara, S. Ghosh and P.K. Chattaraj, RSC Adv. 6, 92786–92794 (2016). doi: 10.1039/C6RA20232B
  • W.J. Yu, X. Liu, B. Xu, X.P. Xing and X.F. Wang, J. Phys. Chem. A. 120, 8590–8598 (2016). doi: 10.1021/acs.jpca.6b08799
  • I. Alkorta, M.M. Montero-Campillo, J. Elguero, M. Yáñez and O. Mó, Dalton Trans., 2018. doi:10.1039/C8DT01679H.
  • E. Durgun, S. Ciraci, W. Zhou and T. Yildirim, Phys. Rev. Lett. 97, 226102 (2006). doi: 10.1103/PhysRevLett.97.226102
  • A. Chakraborty, S. Giri and P.K. Chattaraj, Struct. Chem. 22, 823–837 (2011). doi: 10.1007/s11224-011-9754-7
  • E. Tsivion, J.R. Long and M. Head-Gordon, J. Am. Chem. Soc. 136, 17827–17835 (2014). doi: 10.1021/ja5101323
  • E. Tsivion, S.P. Veccham and M. Head-Gordon, Chemphyschem 18, 184–188 (2017). doi: 10.1002/cphc.201601215
  • W.-X. Lim, A.W. Thornton, A.J. Hill, B.J. Cox, J.M. Hill, M.R. Hill, Langmuir. 2013, 29, 8524-8533. doi: 10.1021/la401446s
  • Z.R. Herm, J.A. Swisher, B. Smit, R. Krishna, J. R. Long, J. Am. Chem. Soc. 2011, 133, 5664-5667. doi: 10.1021/ja111411q
  • K. Sumida, M. R. Hill, S. Horike, A. Dailly, J. R. Long, J. Am. Chem. Soc. 2009, 131, 15120-15121. doi: 10.1021/ja9072707
  • Nanomaterials in Energy Devices. Energy Storage Derivatives and Emerging Solar Cells (CRC Press, Boca Raton FL, 2018).
  • N.N. Greenwood and A. Earnshaw, Chemistry of the Elements (Pergamon Press, Oxford, 1984).
  • A. Vegas, J.F. Liebman and H.D.B. Jenkins, Acta Crystallogr. B. 68, 511–527 (2012). doi: 10.1107/S0108768112030686
  • C. Møller and M.S. Plesset, Phys. Rev. 46, 618–622 (1934). doi: 10.1103/PhysRev.46.618
  • T.H. Dunning, J. Chem. Phys. 90, 1007–1023 (1989). doi: 10.1063/1.456153
  • L.A. Curtiss, P.C. Redfern and K. Raghavachari, J. Chem. Phys. 126, 12 (2007). doi: 10.1063/1.2436888
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, W.F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Wallingford, CT, 2016.
  • B. Jeziorski, R. Moszynski and K. Szalewicz, Chem. Rev. 94, 1887–1930 (1994). doi: 10.1021/cr00031a008
  • A.J. Misquitta, R. Podeszwa, B. Jeziorski and K. Szalewicz, J. Chem. Phys. 123, 214103 (2005). doi: 10.1063/1.2135288
  • C. Adamo and V. Barone, J. Chem. Phys. 110, 6158–6170 (1999). doi: 10.1063/1.478522
  • H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson and M. Wang, Cardiff, UK, 2010.
  • R.F.W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon Press, Oxford, 1990).
  • C.F. Matta and R.J. Boyd, The Quantum Theory of Atoms in Molecules (Wiley-VCH, Weinheim, 2007).
  • T.A. Keith, 11.10.16 ed., TK Gristmill Software, Overland Park KS, USA, 2011 Version p. (aim.tkgristmill.com ).
  • T. Sagara, J. Klassen and E. Ganz, J. Chem. Phys. 121, 12543–12547 (2004). doi: 10.1063/1.1809608
  • S.J. Grabowski, I. Alkorta and J. Elguero, J. Phys. Chem. A. 117, 3243–3251 (2013). doi: 10.1021/jp4016933

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.