Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 117, 2019 - Issue 22: Learning from Disorder – A Tribute to Alan Soper
624
Views
14
CrossRef citations to date
0
Altmetric
Water and Aqueous Solutions

Modulation of structure and dynamics of water under alternating electric field and the role of hydrogen bonding

, , , ORCID Icon & ORCID Icon
Pages 3282-3296 | Received 10 May 2019, Accepted 22 Jul 2019, Published online: 09 Aug 2019

References

  • P.K. Nandi, N.J. English, Z. Futera and A. Benedetto, Hydrogen-bond Dynamics at the bio-Water Interface in Hydrated Proteins: A Molecular-Dynamics Study, Phys. Chem. Chem. Phys. 19, 318 (2017). doi: 10.1039/C6CP05601F
  • Z. Futera and N.J. English, Electric-Field Effects on Adsorbed-Water Structural and Dynamical Properties at Rutile- and Anatase-TiO2 Surfaces, J. Phys. Chem. C. 120, 19603 (2016). doi: 10.1021/acs.jpcc.6b01907
  • Winarto, E. Yamamoto, and K. Yasuoka, Water Molecules in a Carbon Nanotube Under an Applied Electric Field at Various Temperatures and Pressures, Water. (Basel) 9, 1 (2017).
  • S.D. Fried and S.G. Boxer, Measuring Electric Fields and Noncovalent Interactions Using the Vibrational Stark Effect, Acc. Chem. Res. 48, 998 (2015). doi: 10.1021/ar500464j
  • F. Saija, F. Aliotta, M.E. Fontanella, M. Pochylski, G. Salvato, C. Vasi and R.C. Ponterio, Communication: An Extended Model of Liquid Bridging, J. Chem. Phys. 133, 081104 (2010). doi: 10.1063/1.3483690
  • M.R. Kemp and P.J. Fryer, Enhancement of Diffusion Through Foods Using Alternating Electric Fields, Innov. Food Sci. Emerg. Technol. 8, 143 (2007). doi: 10.1016/j.ifset.2006.09.001
  • P. Piyasena, C. Dussault, T. Koutchma, H.S. Ramaswamy and G.B. Awuah, Radio Frequency Heating of Foods: Principles, Applications and Related Properties - a Review, Crit. Rev. Food Sci. Nutr. 43, 587 (2003). doi: 10.1080/10408690390251129
  • N.J. English, P.G. Kusalik and S.A. Woods, Coupling of Translational and Rotational Motion in Chiral Liquids in Electromagnetic and Circularly Polarised Electric Fields, J. Chem. Phys. 136, 094508 (2012). doi: 10.1063/1.3690135
  • N.J. English, G.Y. Solomentsev and P. O'Brien, Nonequilibrium Molecular Dynamics Study of Electric and low-Frequency Microwave Fields on hen egg White Lysozyme, J. Chem. Phys. 131, 035106 (2009). doi: 10.1063/1.3184794
  • N.J. English, D.C. Sorescu, and J. Karl Johnson, Effects of an External Electromagnetic Field on Rutile tio2: A Molecular Dynamics Study, J. Phys. Chem. Solids 67, 1399 (2006). doi: 10.1016/j.jpcs.2006.01.101
  • D. Bratko, C.D. Daub, K. Leung and A. Luzar, Effect of Field Direction on Electrowetting in a Nanopore, J. Am. Chem. Soc. 129, 2504 (2007). doi: 10.1021/ja0659370
  • M. von Domaros, D. Bratko, B. Kirchner, and A. Luzar, Dynamics at a Janus Interface, J. Phys. Chem. C 117, 4561 (2013). doi: 10.1021/jp3111259
  • I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner and A.V. Benderskii, Hydrogen Bonding at the Water Surface Revealed by Isotopic Dilution Spectroscopy, Nature. 474, 192 (2011). doi: 10.1038/nature10173
  • N. Ojaghlou, H.V. Tafreshi, D. Bratko and A. Luzar, Dynamical Insights Into the Mechanism of a Droplet Detachment From a Fiber, Soft Matter. 14, 8924 (2018). doi: 10.1039/C8SM01257A
  • J. Su and H. Guo, Effect of Nanochannel Dimension on the Transport of Water Molecules, J. Phys. Chem. B. 116, 5925 (2012). doi: 10.1021/jp211650s
  • K.F. Rinne, S. Gekle, D.J. Bonthuis and R.R. Netz, Nanoscale Pumping of Water by ac Electric Fields, Nano Lett. 12, 1780 (2012). doi: 10.1021/nl203614t
  • N.J. English and C.J. Waldron, Perspectives on External Electric Fields in Molecular Simulation: Progress, Prospects and Challenges, Phys. Chem. Chem. Phys. 17, 12407 (2015). doi: 10.1039/C5CP00629E
  • R. Kumar, J.R. Schmidt and J.L. Skinner, Hydrogen Bonding Definitions and Dynamics in Liquid Water, J. Chem. Phys. 126, 204107 (2007). doi: 10.1063/1.2742385
  • J. Teixeira, Recent Experimental Aspects of the Structure and Dynamics of Liquid and Supercooled Water, Mol. Phys. 110, 249 (2012). doi: 10.1080/00268976.2011.645894
  • M. Chen, H.Y. Ko, R.C. Remsing, M.F. Calegari Andrade, B. Santra, Z. Sun, A. Selloni, R. Car, M.L. Klein, J.P. Perdew and X. Wu, Ab Initio Theory and Modeling of Water, Proc. Natl. Acad. Sci. 114, 10846 (2017). doi: 10.1073/pnas.1712499114
  • N.J. English and J.M.D. MacElroy, Molecular Dynamics Simulations of Microwave Heating of Water, J. Chem. Phys. 118, 1589 (2003). doi: 10.1063/1.1538595
  • H.J.C. Berendsen, J.R. Grigera and T.P. Straatsma, The Missing Term in Effective Pair Potentials, J. Phys. Chem. 91, 6269 (1987). doi: 10.1021/j100308a038
  • P.T. Kiss and A. Baranyai, A Systematic Development of a Polarizable Potential of Water, J. Chem. Phys. 138, 204507 (2013). doi: 10.1063/1.4807600
  • G. Lamoureux, E. Harder, I.V. Vorobyov, B. Roux and A.D. MacKerell, A Polarizable Model of Water for Molecular Dynamics Simulations of Biomolecules, Chem. Phys. Lett. 418, 245 (2006). doi: 10.1016/j.cplett.2005.10.135
  • J.T.H. Guillaume Stirnemann and D. Laage, Water Hydrogen Bond Dynamics in Aqueous Solutions of Amphiphiles, J. Phys. Chem. B. 114, 3052 (2010). doi: 10.1021/jp9116886
  • S. Vaitheeswaran, J.C. Rasaiah and G. Hummer, Electric Field and Temperature Effects on Water in the Narrow Nonpolar Pores of Carbon Nanotubes, J. Chem. Phys. 121, 7955 (2004). doi: 10.1063/1.1796271
  • C. Merlet, B. Rotenberg, P.A. Madden and M. Salanne, Computer Simulations of Ionic Liquids at Electrochemical Interfaces, Phys. Chem. Chem. Phys. 15, 15781 (2013). doi: 10.1039/c3cp52088a
  • A.M. Saitta, F. Saija and P.V. Giaquinta, Ab Initio Molecular Dynamics Study of Dissociation of Water Under an Electric Field, Phys. Rev. Lett. 108, 207801 (2012). doi: 10.1103/PhysRevLett.108.207801
  • E.M. Stuve, Ionization of Water in Interfacial Electric Fields: An Electrochemical View, Chem. Phys. Lett. 519-520, 1 (2012). doi: 10.1016/j.cplett.2011.09.040
  • J.D. Smith, R.J. Saykally and P.L. Geissler, The Effects of Dissolved Halide Ions on Hydrogen Bonding in Liquid Water, J. Am. Chem. Soc. 129, 13847 (2007). doi: 10.1021/ja071933z
  • D. Bratko, B. Jonsson and H. Wennerstrom, Electrical Double-Layer Interactions with Image Charges, Chem. Phys. Lett. 128, 449 (1986). doi: 10.1016/0009-2614(86)80652-2
  • J.Z. Wu, D. Bratko and J.M. Prausnitz, Interaction Between Like-Charged Colloidal Spheres in Electrolyte Solutions, Proc. Natl. Acad. Sci. 95, 15169 (1998). doi: 10.1073/pnas.95.26.15169
  • D. Bratko and D. Dolar, Ellipsoidal Model of Poly-Electrolyte Solutions, J. Chem. Phys. 80, 5782 (1984). doi: 10.1063/1.446601
  • J.D. Eaves and A. Tomakoff, Electric Field Fluctuations Drive Vibrational Dephasing in Water, J. Phys. Chem. A. 109, 9424 (2005). doi: 10.1021/jp051364m
  • D. Zong, H. Hu, Y. Duan and Y. Sun, Viscosity of Water Under Electric Field: Anisotropy Induced by Redistribution of Hydrogen Bonds, J. Phys. Chem. B. 120, 4818 (2016). doi: 10.1021/acs.jpcb.6b01686
  • D. Li and G.-z. Jia, Dielectric Properties of spc/e and tip4p Under the Static Electric Field and Microwave Field, Physica A. 449, 348 (2016). doi: 10.1016/j.physa.2016.01.007
  • I.M. Svishchev and P.G. Kusalik, Electrofreezing of Liquid Water: A Microscopic Perspective, J. Am. Chem. Soc. 118, 649 (1996). doi: 10.1021/ja951624l
  • R.D. Mountain and D. Thirumalai, Hydration for a Series of Hydrocarbons, Proc. Natl. Acad. Sci. 95, 8436 (1998). doi: 10.1073/pnas.95.15.8436
  • C.D. Daub, K. Leung and A. Luzar, Structure of Aqueous Solutions of Monosodium Glutamate, J. Phys. Chem. B. 113, 7687 (2009). doi: 10.1021/jp810379m
  • W. Sun, Z. Chen and S.-Y. Huang, Molecular Dynamics Simulation of Liquid Methanol Under the Influence of an External Electric Field, Fluid Phase Equilib. 238, 20 (2005). doi: 10.1016/j.fluid.2005.09.007
  • A. Luzar and D. Chandler, Hydrogen-bond Kinetics in Liquid Water, Nature. 379, 55 (1996). doi: 10.1038/379055a0
  • A. Luzar, Water Hydrogen-Bond Dynamics Close to Hydrophobic and Hydrophilic Groups, Faraday Discuss. 103, 29 (1996). doi: 10.1039/fd9960300029
  • D. Laage and J.T. Hynes, A Molecular Jump Mechanism of Water Reorientation, Science. 311, 832 (2006). doi: 10.1126/science.1122154
  • M. Shafiei, M. von Domaros, D. Bratko and A. Luzar, Anisotropic Structure and Dynamics of Water Under Static Electric Fields, J. Chem. Phys. 150, 074505 (2019). doi: 10.1063/1.5079393
  • J.A. Garate, N.J. English and J.M. MacElroy, Static and Alternating Electric Field and Distance-Dependent Effects on Carbon Nanotube-Assisted Water Self-Diffusion Across Lipid Membranes, J. Chem. Phys. 131, 114508 (2009). doi: 10.1063/1.3227042
  • M. Shafiei, Water Dynamics and the Effect of Static and Alternating Electric Fields, thesis, Virginia Commonwealth University, Richmond (2018).
  • S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys. 117, 1 (1995). doi: 10.1006/jcph.1995.1039
  • B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, Gromacs 4 Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory Comput. 4, 435 (2008). doi: 10.1021/ct700301q
  • B.-w.-m. M. Sega, https://github.com/Marcello-Sega/gromacs.
  • M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 2017).
  • N.J. English and J.M.D. MacElroy, Hydrogen Bonding and Molecular Mobility in Liquid Water in External Electromagnetic Fields, J. Chem. Phys. 119, 11806 (2003). doi: 10.1063/1.1624363
  • D.J. Evans and B.L. Holian, The Nose–Hoover Thermostat, J. Chem. Phys. 83, 4069 (1985). doi: 10.1063/1.449071
  • G. Bussi, D. Donadio and M. Parrinello, Canonical Sampling Through Velocity Rescaling, J. Chem. Phys. 126, 014101 (2007). doi: 10.1063/1.2408420
  • H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. DiNola and J.R. Haak, Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys. 81, 3684 (1984). doi: 10.1063/1.448118
  • N.J. English, Molecular Dynamics Simulations of Microwave Effects on Water Using Different Long-Range Electrostatics Methodologies, Mol. Phys. 104, 243 (2006). doi: 10.1080/14733140500352322
  • J.L. England, S. Park and V.S. Pande, Theory for an Order-Driven Disruption of the Liquid State in Water, J. Chem. Phys. 128, 044503 (2008). doi: 10.1063/1.2823129
  • D. Bratko, C.D. Daub and A. Luzar, Field-exposed Water in a Nanopore: Liquid or Vapour?, Phys. Chem. Chem. Phys. 10, 6807 (2008). doi: 10.1039/b809072f
  • C.D. Daub, D. Bratko and A. Luzar, Nanoscale Wetting Under Electric Field From Molecular Simulations, Top. Curr. Chem. 307, 155 (2012). doi: 10.1007/128_2011_188
  • S. De Luca, B.D. Todd, J.S. Hansen and P.J. Daivis, Molecular Dynamics Study of Nanoconfined Water Flow Driven by Rotating Electric Fields Under Realistic Experimental Conditions, Langmuir. 30, 3095 (2014). doi: 10.1021/la404805s
  • M. Tanaka and M. Sato, Microwave Heating of Water, ice, and Saline Solution: Molecular Dynamics Study, J. Chem. Phys. 126, 034509 (2007). doi: 10.1063/1.2403870
  • A. Luzar, Resolving the Hydrogen Bond Dynamics Conundrum, J. Chem. Phys. 113, 10663 (2000). doi: 10.1063/1.1320826
  • A. K. Soper, in Neutron Scattering - Applications in Biology, Chemistry, and Materials Science, edited by F. FernandezAlonso and D. L. Price (2017), Vol. 49, pp. 135.
  • A.K. Soper, The Radial Distribution Functions of Water and ice From 220 to 673 k and at Pressures up to 400 mpa, Chem. Phys. 258, 121 (2000). doi: 10.1016/S0301-0104(00)00179-8
  • R.H. Tromp, P. Postorino, G.W. Neilson, M.A. Ricci and A.K. Soper, Neutron Diffraction Studies of H2O/D2O at Supercritical Temperatures. A Direct Determination of gHH (r), gOH (r), and gOO (r), J. Chem. Phys. 101, 6210 (1994). doi: 10.1063/1.468403
  • P. Jedlovszky, J.P. Brodholt, F. Bruni, M.A. Ricci, A.K. Soper and R. Vallauri, Analysis of the Hydrogen-Bonded Structure of Water From Ambient to Supercritical Conditions, J. Chem. Phys. 108, 8528 (1998). doi: 10.1063/1.476282
  • A.K. Soper, Computer Simulation as a Tool for the Interpretation of Total Scattering Data From Glasses and Liquids, Mol. Simul. 38, 1171 (2012). doi: 10.1080/08927022.2012.732222
  • A.K. Soper, Empirical Potential Monte Carlo Simulation of Fluid Structure, Chem. Phys. 202, 295 (1996). doi: 10.1016/0301-0104(95)00357-6
  • P. K. Mishra, O. Vendrell, and R. Santra, Subpicosecond Energy Transfer From a Highly Intense thz Pulse to Water: A Computational Study Based on the tip4p/2005 Rigid-Water-Molecule Model, Phys/. Rev. E 93, 032124 (2016). doi: 10.1103/PhysRevE.93.032124
  • J. Kolafa and I. Nezbeda, Effect of Short and Long Range Forces on the Structure of Water. Ii. Orientational Ordering and the Dielectric, Mol. Phys. 98, 1505 (2000). doi: 10.1080/00268970009483356
  • P. Mark and L. Nilsson, Structure and Dynamics of Liquid Water with Different Long-Range Interaction Truncation and Temperature Control Methods in Molecular Dynamics Simulations, J. Comput. Chem. 23, 1211 (2002). doi: 10.1002/jcc.10117
  • H.J.C. Berendsen, D. van der Spoel and R. van Drunen, Gromacs a Message-Passing Parallel Molecular Dynamics Implementation, Comput. Phys. Commun. 91, 43 (1995). doi: 10.1016/0010-4655(95)00042-E
  • A. Luzar and D. Chandler, Structure and Hydrogen Bond Dynamics of Water–Dimethyl Sulfoxide Mixtures by Computer Simulations, J. Chem. Phys. 98, 8160 (1993). doi: 10.1063/1.464521
  • S. Floros, M. Liakopoulou-Kyriakides, K. Karatasos and G.E. Papadopoulos, Frequency Dependent non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study, PLoS One. 12, e0169505 (2017). doi: 10.1371/journal.pone.0169505
  • R. Reale, N.J. English, P. Marracino, M. Liberti and F. Apollonio, Dipolar Response and Hydrogen-Bond Kinetics in Liquid Water in Square-Wave Time-Varying Electric Fields, Mol. Phys. 112, 1870 (2013). doi: 10.1080/00268976.2013.867081
  • D. Laage and J. Hynes, On the Molecular Mechanism of Water Reorientation, J. Phys. Chem. B. 112, 14230 (2008). doi: 10.1021/jp805217u
  • D.J. Bonthuis, S. Gekle and R.R. Netz, Profile of the Static Permittivity Tensor of Water at Interfaces: Consequences for Capacitance, Hydration Interaction and ion Adsorption, Langmuir. 28, 7679 (2012). doi: 10.1021/la2051564
  • J. Qvist, H. Schober and B. Halle, Structural Dynamics of Supercooled Water From Quasielastic Neutron Scattering and Molecular Simulations, J. Chem. Phys. 134, 144508 (2011). doi: 10.1063/1.3578472
  • Z. Futera and N.J. English, Communication: Influence of External Static and Alternating Electric Fields on Water From Long-Time non-Equilibrium ab Initio Molecular Dynamics, J. Chem. Phys. 147, 031102 (2017). doi: 10.1063/1.4994694
  • M.G. Mazza, N. Giovambattista, H.E. Stanley and F.W. Starr, Connection of Translational and Rotational Dynamical Heterogeneities with the Breakdown of the Stokes-Einstein and Stokes-Einstein-Debye Relations in Water, Phys. Rev. E. 76, 031203 (2007). doi: 10.1103/PhysRevE.76.031203
  • M.G. Mazza, N. Giovambattista, F.W. Starr and H.E. Stanley, Relation Between Rotational and Translational Dynamic Heterogeneities in Water, Phys. Rev. Lett. 96, 057803 (2006). doi: 10.1103/PhysRevLett.96.057803
  • H.J. Bakker, Y.L.A. Rezus and R.L.A. Timmer, Molecular Reorientation of Liquid Water Studies with Femtosecond Midinfrared Spectroscopy, J. Phys. Chem. B. 112, 11523 (2008). doi: 10.1021/jp8012943

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.