Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 118, 2020 - Issue 21-22: MQM 2019
160
Views
2
CrossRef citations to date
0
Altmetric
MQM 2019

Theory of chemical bonds in metalloenzymes XXIII fundamental principles for the photo-induced water oxidation in oxygen evolving complex of photosystem II

, , , , &
Article: e1725168 | Received 30 Nov 2019, Accepted 22 Jan 2020, Published online: 19 Feb 2020

References

  • T.J. Wydrzynski and K. Satoh, Advances in Photosynthesis and Respiration, Vol. 22 Photosystem II (Springer, Dordrecht, 2005).
  • M. Pessarakli, Handbook of Photosynthesis, 3rd ed. (CRC Press, Boca Raton, 2016).
  • V.K. Yachandra, K. Sauer and M.P. Klein, Chem. Rev. 96, 2927–2950 (1996). doi: 10.1021/cr950052k
  • W. Rüttinger and G.C. Dismukes, Chem. Rev. 97, 1–24 (1997). doi: 10.1021/cr950201z
  • J.P. McEvoy and G.W. Brudvig, Chem. Rev. 106, 4455–4483 (2006). doi: 10.1021/cr0204294
  • S. Mukhopadhyay, S.K. Mandal, S. Bhaduri and W.H. Armstrong, Chem. Rev. 104, 3981–4026 (2004). doi: 10.1021/cr0206014
  • H. Dau, L. Iuzzolino and J. Dittmer, Biochim. Biophys. Acta Bioenerg. 1503, 24–39 (2001). doi: 10.1016/S0005-2728(00)00230-9
  • J. Yano, Y. Pushkar, P. Glatzel, A. Lewis, K. Sauer, J. Messinger, U. Bergmann and V. Yachandra, J. Am. Chem. Soc. 127, 14974–14975 (2005). doi: 10.1021/ja054873a
  • J. Yano, J. Kern, K. Sauer, M.J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni and V.K. Yachandra, Science. 314, 821–825 (2006). doi: 10.1126/science.1128186
  • H. Dau, A. Grundmeier, P. Loja and M. Haumann, Phil. Trans. R. Soc. B. Biol. Sci. 363, 1237–1244 (2008). doi: 10.1098/rstb.2007.2220
  • A. Grundmeier and H. Dau, Biochim. Biophys. Acta Bioenerg. 1817, 88–105 (2012). doi: 10.1016/j.bbabio.2011.07.004
  • C. Glöckner, J. Kern, M. Broser, A. Zouni, V. Yachandra and J. Yano, J. Biol. Chem. 288, 22607–22620 (2013). doi: 10.1074/jbc.M113.476622
  • A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger and P. Orth, Nature. 409, 739–743 (2001). doi: 10.1038/35055589
  • N. Kamiya and J.-R. Shen, Proc. Natl. Acad. Sci. USA. 100, 98–103 (2003). doi: 10.1073/pnas.0135651100
  • K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science. 303, 1831–1838 (2004). doi: 10.1126/science.1093087
  • J. Biesiadka, B. Loll, J. Kern, K.-D. Irrgang and A. Zouni, A. Phys. Chem. Chem. Phys. 6, 4733–4736 (2004). doi: 10.1039/B406989G
  • B. Loll, J. Kern, W. Saenger, A. Zouni and J. Biesiadka, Nature. 438, 1040–1044 (2005). doi: 10.1038/nature04224
  • R. Krivanek, J. Kern, A. Zouni, H. Dau and M. Haumann, Biochim. Biophys. Acta Bioenerg. 1767, 520–527 (2007). doi: 10.1016/j.bbabio.2007.02.013
  • A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni and W. Saenger, Nat. Struct. Mol. Biol. 16, 334–342 (2009). doi: 10.1038/nsmb.1559
  • K. Kawakami, Y. Umena, N. Kamiya and J.-R. Shen, Proc. Natl. Acad. Sci. U.S.A. 106, 8567–8672 (2009). doi: 10.1073/pnas.0812797106
  • A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, F. Müh, W. Saenger and A. Zouni, Chem. Phys. Chem. 11, 1160–1171 (2010). doi: 10.1002/cphc.200900901
  • Y. Umena, K. Kawakami, J.-R. Shen and N. Kamiya, Nature. 473, 55–60 (2011). doi: 10.1038/nature09913
  • K. Kawakami, Y. Umena, N. Kamiya and J.-R. Shen, J. Photochem. Photobiol. B. 104, 9–18 (2011). doi: 10.1016/j.jphotobiol.2011.03.017
  • M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago and J.-R. Shen, Nature. 517, 99–103 (2015). doi: 10.1038/nature13991
  • J.-R. Shen, Annu. Rev. Plant Biol. 66, 23–48 (2015). doi: 10.1146/annurev-arplant-050312-120129
  • J.M. Peloquin, K.A. Campbell, D.W. Randall, M.A. Evanchik, V.L. Pecoraro, W.H. Armstrong and R.D. Britt, J. Am. Chem. Soc. 122, 10926–10942 (2000). doi: 10.1021/ja002104f
  • J.M. Peloquin and R.D. Britt, Biochim. Biophys. Acta Bioenerg. 1503, 96–111 (2001). doi: 10.1016/S0005-2728(00)00219-X
  • N. Cox, L. Rapatskiy, J.-H. Su, D.A. Pantazis, M. Sugiura, L. Kulik, P. Dorlet, A.W. Rutherford, F. Neese, A. Boussac, W. Lubitz and J. Messinger, J. Am. Chem. Soc. 133, 3635–3648 (2011). doi: 10.1021/ja110145v
  • W. Ames, D.A. Pantazis, V. Krewald, N. Cox, J. Messinger, W. Lubitz and F. Neese, J. Am. Chem. Soc. 133, 19743–19757 (2011). doi: 10.1021/ja2041805
  • L. Rapatskiy, N. Cox, A. Savitsky, W.M. Ames, J. Sander, M.M. Nowaczyk, M. Rögner, A. Boussac, F. Neese, J. Messinger and W. Lubitz, J. Am. Chem. Soc. 134, 16619–16634 (2012). doi: 10.1021/ja3053267
  • N. Cox, M. Retegan, F. Neese, D.A. Pantazis, A. Boussac and W. Lubitz, Science. 345, 804–808 (2014). doi: 10.1126/science.1254910
  • A. Boussac, A.W. Rutherford and M. Sugiura, Biochim. Biophys. Acta Bioenerg. 1847, 576–586 (2015). doi: 10.1016/j.bbabio.2015.03.006
  • A. Boussac, I. Ugur, A. Marion, M. Sugiura, V.R.I. Kaila and A.W. Rutherford, Biochim. Biophys. Acta Bioenerg. 1859, 342–356 (2018). doi: 10.1016/j.bbabio.2018.02.010
  • A. Boussac, Biochim. Biophys. Acta Bioenerg. 1860, 508–518 (2019). doi: 10.1016/j.bbabio.2019.05.001
  • M. Chrysina, E. Heyno, Y. Kutin, M. Reus, H. Nilsson, M.M. Nowaczyk, S. DeBeer, F. Neese, J. Messinger, W. Lubitz and N. Cox, Proc. Natl. Acad. Sci. U.S.A. 116, 16841–16846 (2019). doi: 10.1073/pnas.1817526116
  • K. Kanda, S. Yamanaka, T. Saito, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, M. Okumura, H. Nakamura and K. Yamaguchi, Chem. Phys. Lett. 506, 98–103 (2011). doi: 10.1016/j.cplett.2011.02.030
  • S. Yamanaka, H. Isobe, K. Kanda, T. Saito, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, M. Okumura, H. Nakamura and K. Yamaguchi, Chem. Phys. Lett. 511, 138–145 (2011). doi: 10.1016/j.cplett.2011.06.021
  • H. Isobe, M. Shoji, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen and K. Yamaguchi, Dalton Trans. 41, 13727–13740 (2012). doi: 10.1039/c2dt31420g
  • M. Suga, F. Akita, M. Sugahara, M. Kubo, Y. Nakajima, T. Nakane, K. Yamashita, Y. Umena, M. Nakabayashi, T. Yamane, T. Nakano, M. Suzuki, T. Masuda, S. Inoue, T. Kimura, T. Nomura, S. Yonekura, L.-J. Yu, T. Sakamoto, T. Motomura, J.-H. Chen, Y. Kato, T. Noguchi, K. Tono, Y. Joti, T. Kameshima, T. Hatsui, E. Nango, R. Tanaka, H. Naitow, Y. Matsuura, A. Yamashita, M. Yamamoto, O. Nureki, M. Yabashi, T. Ishikawa, S. Iwata and J.-R. Shen, Nature. 543, 131–135 (2017). doi: 10.1038/nature21400
  • J. Kern, R. Chatterjee, I.D. Young, F.D. Fuller, L. Lassalle, M. Ibrahim, S. Gul, T. Fransson, A.S. Brewster, R. Alonso-Mori, R. Hussein, M. Zhang, L. Douthit, C. de Lichtenberg, M.H. Cheah, D. Shevela, J. Wersig, I. Seuffert, D. Sokaras, E. Pastor, C. Weninger, T. Kroll, R.G. Sierra, P. Aller, A. Butryn, A.M. Orville, M. Liang, A. Batyuk, J.E. Koglin, S. Carbajo, S. Boutet, N.W. Moriarty, J.M. Holton, H. Dobbek, P.D. Adams, U. Bergmann, N.K. Sauter, A. Zouni, J. Messinger, J. Yano and V.K. Yachandra, Nature. 563, 421–425 (2018). doi: 10.1038/s41586-018-0681-2
  • M. Suga, F. Akita, K. Yamashita, Y. Nakajima, G. Ueno, H. Li, T. Yamane, K. Hirata, Y. Umena, S. Yonekura, L.-J. Yu, H. Murakami, T. Nomura, T. Kimura, M. Kubo, S. Baba, T. Kumasaka, K. Tono, M. Yabashi, H. Isobe, K. Yamaguchi, M. Yamamoto, H. Ago and J.-R. Shen, Science. 366, 334–338 (2019). doi: 10.1126/science.aax6998
  • H. Isobe, M. Shoji, J.-R. Shen and K. Yamaguchi, Inorg. Chem. 55, 502–511 (2016). doi: 10.1021/acs.inorgchem.5b02471
  • M. Shoji, H. Isobe, T. Nakajima, Y. Shigeta, M. Suga, F. Akita, J.-R. Shen and K. Yamaguchi, Faraday Discuss. 198, 83–106 (2017). doi: 10.1039/C6FD00230G
  • K. Yamaguchi, M. Shoji, H. Isobe, S. Yamanaka, T. Kawakami, S. Yamada, M. Katouda and T. Nakajima, Mol. Phys. 116, 717–745 (2018). doi: 10.1080/00268976.2018.1428375
  • M. Shoji, H. Isobe, K. Miyagawa and K. Yamaguchi, Chem. Phys. 518, 81–90 (2019). doi: 10.1016/j.chemphys.2018.11.003
  • K. Yamaguchi, M. Shoji, H. Isobe, K. Miyagawa and K. Nakatani, Mol. Phys. 117, 2320–2354 (2019). doi: 10.1080/00268976.2018.1552799
  • H. Isobe, M. Shoji, T. Suzuki, J.-R. Shen and K. Yamaguchi, J. Chem. Theory Comput. 15, 2375–2391 (2019). doi: 10.1021/acs.jctc.8b01055
  • M. Shoji, H. Isobe, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya and K. Yamaguchi, Adv. Quant. Chem. 78, 307–451 (2019). doi: 10.1016/bs.aiq.2018.05.003
  • K. Yamaguchi, S. Yamanaka, H. Isobe, M. Shoji, K. Miyagawa, T. Nakajima, T. Kawakami and M. Okumura, Physiol. Plant. 166, 44–59 (2019). doi: 10.1111/ppl.12960
  • P.E.M. Siegbahn, Biochim. Biophys. Acta Bioenerg. 1827, 1003–1019 (2013). doi: 10.1016/j.bbabio.2012.10.006
  • P.E.M. Siegbahn, Phys. Chem. Chem. Phys. 20, 22926–22931 (2018). doi: 10.1039/C8CP03720E
  • K. Yamaguchi, S. Yamanaka, M. Nishino, Y. Takano, Y. Kitagawa, H. Nagao and Y. Yoshioka, Theoret. Chem. Acc. 102, 328–345 (1999). doi: 10.1007/s002140050505
  • S. Yamanaka, D. Yamaki, S. Kiribayashi and K. Yamaguchi, Int. J. Quant. Chem. 85, 421–431 (2001). doi: 10.1002/qua.1507
  • S. Yamanaka, R. Takeda and K. Yamaguchi, Polyhedron. 22, 2013–2017 (2003). doi: 10.1016/S0277-5387(03)00168-2
  • H. Isobe, M. Shoji, K. Koizumi, Y. Kitagawa, S. Yamanaka, S. Kuramitsu and K. Yamaguchi, Polyhedron. 24, 2767–2777 (2005). doi: 10.1016/j.poly.2005.08.049
  • K. Yamaguchi, S. Yamanaka, H. Isobe, M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami and M. Okumura, Polyhedron. 26, 2216–2224 (2007). doi: 10.1016/j.poly.2006.10.054
  • K. Yamaguchi, M. Shoji, T. Saito, H. Isobe, S. Nishihara, K. Koizumi, S. Yamada, T. Kawakami, Y. Kitagawa, S. Yamanaka and M. Okumura, Int. J. Quant. Chem. 110, 3101–3128 (2010). doi: 10.1002/qua.22914
  • K. Kanda, S. Yamanaka, T. Saito, T. Kawakami, Y. Kitagawa, M. Okumura, H. Nakamura and K. Yamaguchi, Polyhedron. 30, 3256–3261 (2011). doi: 10.1016/j.poly.2011.04.042
  • T. Saito, S. Yamanaka, K. Kanda, H. Isobe, Y. Takano, Y. Shigeta, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, M. Okumura, M. Shoji, Y. Yoshioka and K. Yamaguchi, Int. J. Quant. Chem. 112, 253–276 (2012). doi: 10.1002/qua.23218
  • S. Yamanaka, T. Saito, K. Kanda, H. Isobe, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, M. Okumura, H. Nakamura and K. Yamaguchi, Int. J. Quant. Chem. 112, 321–343 (2012). doi: 10.1002/qua.23261
  • S. Yamanaka, K. Kanda, T. Saito, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, M. Okumura, H. Nakamura and K. Yamaguchi, Adv. Quant. Chem. 64, 121–187 (2012). doi: 10.1016/B978-0-12-396498-4.00016-8
  • K. Yamaguchi, S. Yamanaka, H. Isobe, T. Saito, K. Kanda, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, M. Okumura, H. Nakamura, M. Shoji and Y. Yoshioka, Int. J. Qunat. Chem. 113, 453–473 (2013). doi: 10.1002/qua.24280
  • K. Yamaguchi, H. Isobe, S. Yamanaka, T. Saito, K. Kanda, M. Shoji, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya and M. Okumura, Int. J. Qunat. Chem. 113, 525–541 (2013). doi: 10.1002/qua.24117
  • M. Shoji, H. Isobe, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen and K. Yamaguchi, Catal. Sci. Technol. 3, 1831–1848 (2013). doi: 10.1039/c3cy00051f
  • K. Yamaguchi, S. Yamanaka, M. Shoji, H. Isobe, T. Kawakami, S. Yamada and M. Okumura, Mol. Phys. 112, 485–507 (2014). doi: 10.1080/00268976.2013.842009
  • H. Isobe, M. Shoji, S. Yamanaka, H. Mino, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen and K. Yamaguchi, Phys. Chem. Chem. Phys. 16, 11911–11923 (2014). doi: 10.1039/C4CP00282B
  • M. Shoji, H. Isobe, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen, T. Nakajima and K. Yamaguchi, Mol. Phys. 113, 359–384 (2015). doi: 10.1080/00268976.2014.960021
  • M. Shoji, H. Isobe, S. Yamanaka, M. Suga, F. Akita, J.-R. Shen and K. Yamaguchi, Chem. Phys. Lett. 623, 1–7 (2015). doi: 10.1016/j.cplett.2015.01.030
  • M. Shoji, H. Isobe, S. Yamanaka, M. Suga, F. Akita, J.-R. Shen and K. Yamaguchi, Chem. Phys. Lett. 627, 44–52 (2015). doi: 10.1016/j.cplett.2015.03.033
  • M. Shoji, H. Isobe, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen, T. Nakajima and K. Yamaguchi, Adv. Quant. Chem. 70, 325–413 (2015). doi: 10.1016/bs.aiq.2014.10.001
  • M. Shoji, H. Isobe and K. Yamaguchi, Chem. Phys. Lett. 636, 172–179 (2015). doi: 10.1016/j.cplett.2015.07.039
  • H. Isobe, M. Shoji, J.-R. Shen and K. Yamaguhi, J. Phys. Chem. B. 119, 13922–13933 (2015). doi: 10.1021/acs.jpcb.5b05740
  • J.G. Bednorz and K.A. Müller, Z. Phys. B. 64, 189–193 (1986). doi: 10.1007/BF01303701
  • P.W. Anderson, Science 235, 1196–1198 (1987). doi: 10.1126/science.235.4793.1196
  • K. Yamaguchi, Y. Takahara, T. Fueno and K. Nasu, Jpn. J. Appl. Phys. 26, L1362–L1364 (1987). doi: 10.1143/JJAP.26.L1362
  • M. Nishino, S. Yamanaka, Y. Yoshioka and K. Yamaguchi, J. Phys. Chem. A. 101, 705–712 (1997). doi: 10.1021/jp962091l
  • H. Isobe, T. Soda, Y. Kitagawa, Y. Takano, T. Kawakami, Y. Yoshioka and K. Yamaguchi, Int. J. Quant. Chem. 85, 34–43 (2001). doi: 10.1002/qua.1099
  • N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729–15735 (2006). doi: 10.1073/pnas.0603395103
  • K. Yamaguchi, Chem. Phys. Lett. 33, 330–335 (1975). doi: 10.1016/0009-2614(75)80169-2
  • K. Yamaguchi, in Singlet Oxygen Vol. III, edited by A.A. Frimer (CRC Press, Boca Rayton, FL, 1985), Chapter 2, pp. 199–250.
  • K. Yamaguchi, Y. Takahara and T. Fueno, in Applied Quantum Chemistry, edited by V. H. Smith, Jr., H. F. Schaefer, III and K. Morokuma (D. Reidel Pub. Com., Lancaster, l986), pp. 155–184.
  • K. Yamaguchi, in Self-Consistent Field: Theory and Applications, edited by R. Carbó and M. Klobukowski (Elsevier, Amsterdam, 1990) pp. 727–823.
  • K. Yamaguchi, K. Takada, Y. Otsuji and K. Mizuno, in Organic Peroxides, edited by W. Ando (John Wiley & Sons, Chichester, 1992) pp. 1–100.
  • S. Yamanaka, T. Kawakami, H. Nagao and K. Yamaguchi, Chem. Phys. Lett. 231, 25–33 (1994). doi: 10.1016/0009-2614(94)01221-0
  • M. Shoji, K. Koizumi, Y. Kitagawa, S. Yamanaka, M. Okumura and K. Yamaguchi, Int. J. Quant. Chem. 107, 609–627 (2007). doi: 10.1002/qua.21128
  • S. Petrie, R. Stranger and R.J. Pace, Phys. Chem. Chem. Phys. 19, 27682–27693 (2017). doi: 10.1039/C7CP04797E
  • P.E.M. Siegbahn, Chem. Eur. J. 14, 8290–8302 (2008). doi: 10.1002/chem.200800445
  • T. Matsukawa, H. Mino, D. Yoneda and A. Kawamori, Biochemistry. 38, 4072–4077 (1999). doi: 10.1021/bi9818570
  • S.L. Dexheimer and M.P. Klein, J. Am. Chem. Soc. 114, 2821–2826 (1992). doi: 10.1021/ja00034a010
  • D. Koulougliotis, D.J. Hirsh and G.W. Brudvig, J. Am. Chem. Soc. 114, 8322–8323 (1992). doi: 10.1021/ja00047a072
  • T. Yamauchi, H. Mino, T. Matsukawa, A. Kawamori and T. Ono, Biochemistry. 36, 7520–7526 (1997). doi: 10.1021/bi962791g
  • K. Yamaguchi, M. Shoji, H. Isobe, S. Yamanaka, Y. Umena, K. Kawakami and N. Kamiya, Mol. Phys. 115, 636–666 (2017). doi: 10.1080/00268976.2016.1278476
  • A. Tanaka, Y. Fukushima and N. Kamiya, J. Am. Chem. Soc. 139, 1718–1721 (2017). doi: 10.1021/jacs.6b09666
  • G. Renger and B. Hanssum, FEBS Lett. 299, 28–32 (1992). doi: 10.1016/0014-5793(92)80092-U
  • G. Renger, Biochim. Biophys. Acta Bioenerg. 1503, 210–228 (2001). doi: 10.1016/S0005-2728(00)00227-9
  • G. Renger, Biochim. Biophys. Acta Bioenerg. 1817, 1164–1176 (2012). doi: 10.1016/j.bbabio.2012.02.005
  • V. Krewald, M. Retegan, N. Cox, J. Messinger, W. Lubiz, S. DeBeer, F. Neese and D.A. Pantazis, Chem. Sci. 6, 1676–1695 (2015). doi: 10.1039/C4SC03720K
  • D. Narzi, G. Mattioli, D. Bovi and L. Guidoni, Chem. Eur. J. 23, 6969–6973 (2017). doi: 10.1002/chem.201700722
  • P.E.M. Siegbahn and X. Li, J. Comput. Chem. 38, 2157–2160 (2017). doi: 10.1002/jcc.24863
  • J.R. Winkler and H.B. Gray, Struct. Bond. 142, 17–28 (2012). doi: 10.1007/430_2011_55
  • M.H.V. Huynh and T.J. Meyer, Chem. Rev. 107, 5004–5064 (2007). doi: 10.1021/cr0500030
  • C.S. Mullins and V.L. Pecoraro, Coord. Chem. Rev. 252, 416–443 (2008). doi: 10.1016/j.ccr.2007.07.021
  • J.J. Concepcion, J.W. Jurss, M.K. Brennaman, P.G. Hoertz, A.O.T. Patrocino, N.Y.M. Iha, J.L. Templeton and T.J. Meyer, Acc. Chem. Res. 42, 1954–1965 (2009). doi: 10.1021/ar9001526
  • X. Sala, S. Maji, R. Bofill, J. García-Antón, L. Escrche and A. Llobet, Acc. Chem. Res. 47, 504–516 (2014). doi: 10.1021/ar400169p
  • L. Duan, L. Wang, F. Li and L. Sun, Acc. Chem. Res. 48, 2084–2096 (2015). doi: 10.1021/acs.accounts.5b00149
  • J.T. Groves, R.C. Haushalter, M. Nakamura, T.E. Nemo and B.J. Evans, J. Am. Chem. Soc. 103, 2884–2886 (1981). doi: 10.1021/ja00400a075
  • J.T. Groves and J. Inorg, Biochem. 100, 434–447 (2006).
  • K. Yamaguchi, J. Mol. Struct. Theochem. 103, 101–120 (1983). doi: 10.1016/0166-1280(83)85012-X
  • K. Yamaguchi, in Ryoshi-Kagaku Saizensen, edited by S. Aono, T. Nakajima, Y. Nishimoto and H. Hosoya (Kagaku Dojin, Kyoto, 1985), pp. 19–29.
  • K. Yamaguchi, M. Nakano, H. Namimoto and T. Fueno, Jpn. J. Appl. Phys. 27, L1835–L1838 (1988). doi: 10.1143/JJAP.27.L1835
  • Y. Takahara, K. Yamaguchi and T. Feno, Chem. Phys. Lett. 158, 95–101 (1989). doi: 10.1016/0009-2614(89)87300-2
  • S. Yamanaka, T. Kawamura, T. Noro and K. Yamaguchi, J. Mol. Struct. Theochem. 310, 185–196 (1994).
  • Y. Yoshioka, S. Kubo, K. Yamaguchi and I. Saito, Chem. Phys. Lett. 294, 459–467 (1998). doi: 10.1016/S0009-2614(98)00924-5
  • W.-J. Zhou, R. Wischert, K. Xue, Y.-T. Zheng, B. Albela, L. Bonneviot, J.-M. Clacens, F. De Campo, M. Pera-Titus and P. Wu, ACS Catal. 4, 53–62 (2014). doi: 10.1021/cs400757j
  • D.M. Herlihy, M.M. Waegele, X. Chen, C.D. Pemmaraju, D. Prendergast and T. Cuk, Nat. Chem. 8, 549–555 (2016). doi: 10.1038/nchem.2497
  • S. Fukuzumi, Y. Morimoto, H. Kotani, P. Naumov, Y.-M. Lee and W. Nam, Nat. Chem. 2, 756–759 (2010). doi: 10.1038/nchem.731
  • P.E.M. Siegbahn, Chem. Eur. J. 12, 9217–9227 (2006). doi: 10.1002/chem.200600774
  • P.E.M. Siegbahn, Acc. Chem. Res. 42, 1871–1880 (2009). doi: 10.1021/ar900117k
  • P.E.M. Siegbahn, J. Photochem. Photobiol. B. 104, 94–99 (2011). doi: 10.1016/j.jphotobiol.2011.01.014
  • P.E.M. Siegbahn, ChemPhysChem. 12, 3274–3280 (2011). doi: 10.1002/cphc.201100475
  • P.E.M. Siegbahn, Phys. Chem. Chem. Phys. 14, 4849–4856 (2012). doi: 10.1039/c2cp00034b
  • K. Koizumi, M. Shoji, Y. Nishiyama, Y. Maruno, Y. Kitagawa, K. Soda, S. Yamanaka, M. Okumura and K. Yamaguchi, Int. J. Quant. Chem. 100, 943–956 (2004). doi: 10.1002/qua.20152
  • S. Iwata and J. Barber, Curr. Opin. Struct. Biol. 14, 447–453 (2004). doi: 10.1016/j.sbi.2004.07.002
  • E.M. Sproviero, J.A. Gascon, J.P. McEvoy, G.W. Brudvig and V.S. Batista, J. Inorg. Biochem. 100, 786–800 (2006). doi: 10.1016/j.jinorgbio.2006.01.017
  • E.M. Sproviero, J.A. Gascón, J.P. McEvoy, G.W. Brudvig and V.S. Batista, J. Am. Chem. Soc. 130, 3428–3442 (2008). doi: 10.1021/ja076130q
  • H.C. Longuet-Higgins and E.W. Abrahamson, J. Am. Chem. Soc. 87, 2045–2046 (1965). doi: 10.1021/ja01087a033
  • R.B. Woodward and R. Hoffmann, Angew. Chem. Int. Ed. 8, 781–853 (1969). doi: 10.1002/anie.196907811
  • K. Yamaguchi, Chem. Phys. Lett. 28, 93–97 (1974). doi: 10.1016/0009-2614(74)80024-2
  • Y. Yoshioka, K. Yamaguchi and T. Fueno, Theoret. Chim. Acta (Berl.). 45, 1–20 (1977). doi: 10.1007/BF00551454
  • K. Yamaguchi, Chem. Phys. Lett. 30, 288–292 (1975). doi: 10.1016/0009-2614(75)80122-9
  • K. Yamaguchi, Y. Yoshioka and T. Fueno, Chem. Phys. 20, 171–181 (1977). doi: 10.1016/0301-0104(77)85021-0
  • Y. Naruta, M. Sasayama and K. Ichihara, J. Mol. Catal. A Chem. 117, 115–121 (1997). doi: 10.1016/S1381-1169(96)00416-5
  • T. Wada, K. Tsuge and K. Tanaka, Angew. Chem. Int. Ed. 39, 1479–1482 (2000). doi: 10.1002/(SICI)1521-3773(20000417)39:8<1479::AID-ANIE1479>3.0.CO;2-4
  • K. Tanaka, H. Isobe, S. Yamanaka and K. Yamaguchi, Proc. Natl. Acad. Sci. U.S.A. 109, 15600–15605 (2012). doi: 10.1073/pnas.1120705109
  • K. Yamaguchi, S. Yamanaka, H. Isobe, K. Tanaka and N. Ueyama, Int. J. Quant. Chem. 112, 3849–3866 (2012). doi: 10.1002/qua.24270
  • H. Isobe, K. Tanaka, J.-R. Shen and K. Yamaguchi, Inorg. Chem. 53, 3973–3984 (2014). doi: 10.1021/ic402340d
  • M. Okumura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V.K.K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata and S. Masaoka, Nature. 530, 465–468 (2016). doi: 10.1038/nature16529
  • M. Shoji, H. Isobe and K. Yamaguchi, Chem. Phys. Lett. 714, 219–226 (2019). doi: 10.1016/j.cplett.2018.10.041
  • M. Shoji, H. Isobe, Y. Shigeta, T. Nakajima and K. Yamaguchi, J. Phys. Chem. B. 122, 6491–6502 (2018). doi: 10.1021/acs.jpcb.8b03465
  • M. Shoji, H. Isobe, J.-R. Shen, M. Suga, F. Akita, K. Miyagawa, Y. Shigeta and K. Yamaguchi, Chem. Phys. Lett. 730, 416–425 (2019). doi: 10.1016/j.cplett.2019.06.026
  • K. Miyagawa, T. Kawakami, H. Isobe, M. Shoji, S. Yamanaka, K. Nakatani, M. Okumura, T. Nakajima and K. Yamaguchi, Chem. Phys. Lett. 732, 136660 (2019). doi: 10.1016/j.cplett.2019.136660
  • K. Miyagawa, H. Isobe, T. Kawakami, M. Shoji, S. Yamanaka, M. Okumura, T. Nakajima and K. Yamaguchi, Chem. Phys. Lett. 734, 136731 (2019). doi: 10.1016/j.cplett.2019.136731
  • N.J. Beal, T.A. Corry and P.J. O'Malley, J. Phys. Chem. B. 122, 1394–1407 (2018). doi: 10.1021/acs.jpcb.7b10843
  • Y. Pushkar, K.M. Davis and M.C. Palenik, J. Phys. Chem. Lett. 9, 3525–3531 (2018). doi: 10.1021/acs.jpclett.8b00800
  • K. Yamaguchi, M. Shoji, H. Isobe and S. Yamanaka, Reports of Toyoda Physical and Chemical Research Institute, 66, 1–20 (2013).
  • H. Isobe, M. Shoji, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen and K. Yamaguchi, Results in supporting materials of Dalton Trans. 41, 13727–13740 (2012). (unpublished) ref. 38.
  • W.H. Orme-Johnson, Annu. Rev. Biochem. 42, 159–204 (1973). doi: 10.1146/annurev.bi.42.070173.001111
  • K. Yamaguchi, T. Tsunekawa, Y. Toyoda and T. Fueno, Chem. Phys. Lett. 143, 371–376 (1988). doi: 10.1016/0009-2614(88)87049-0
  • K. Yamaguchi, T. Fueno, M. Ozaki, N. Ueyama and A. Nakamura, Chem. Phys. Lett. 168, 56–62 (1990). doi: 10.1016/0009-2614(90)85102-I
  • K. Yamaguchi, T. Fueno, N. Ueyama, A. Nakamura and M. Ozaki, Chem. Phys. Lett. 164, 210–216 (1989). doi: 10.1016/0009-2614(89)85017-1
  • A. Nakamura, N. Ueyama and K. Yamaguchi, editors, Organometallic Conjugation (Springer, Tokyo, 2002).
  • M. Shoji, K. Koizumi, K. Kitagawa, S. Yamanaka, M. Okumura, K. Yamaguchi, Y. Ohki, Y. Sunada, M. Honda and T. Tatsumi, Int. J. Quant. Chem. 106, 3288–3302 (2006). doi: 10.1002/qua.21201
  • S.C. Jensen, K.M. Davis, B. Sullivan, D.A. Hartzler, G.T. Seidler, D.M. Casa, E. Kasman, H.E. Colmer, A.A. Massie, T.A. Jackson and Y. Pushkar, J. Phys. Chem. Lett. 8, 2584–2589 (2017). doi: 10.1021/acs.jpclett.7b01209
  • K.M. Davis, M.C. Palenik, L. Yan, P.F. Smith, G.T. Seidler, G.C. Dismukes and Y.N. Pushkar, J. Phys. Chem. C. 120, 3326–3333 (2016). doi: 10.1021/acs.jpcc.5b10610
  • Y. Pushkar, X. Long, P. Glatzel, G.W. Brudvig, C. Dismukes, T.J. Collins, V.K. Yachandra, J. Yano and U. Bergmann, Angew. Chem. Int. Ed. 49, 800–803 (2010). doi: 10.1002/anie.200905366
  • A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol C. 1, 1–21 (2000). doi: 10.1016/S1389-5567(00)00002-2
  • K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269–8285 (2005). doi: 10.1143/JJAP.44.8269
  • A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009). doi: 10.1039/B800489G
  • R. Abe, J. Photochem. Photobiol. C. 11, 179–209 (2010). doi: 10.1016/j.jphotochemrev.2011.02.003
  • K. Maeda, J. Photochem. Photobiol. C. 12, 237–268 (2011). doi: 10.1016/j.jphotochemrev.2011.07.001
  • K. Yamaguchi, Y. Kitagawa, H. Isobe, M. Shoji, S. Yamanaka and M. Okumura, Polyhedron. 57, 138–149 (2013). doi: 10.1016/j.poly.2013.04.019
  • K. Yamaguchi, M. Shoji, H. Isobe, Y. Kitagawa, S. Yamada, T. Kawakami, S. Yamanaka and M. Okumura, Polyhedron. 66, 228–244 (2013). doi: 10.1016/j.poly.2013.05.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.