Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 119, 2021 - Issue 21-22: Special Issue of Molecular Physics in Honour of John Stanton
339
Views
12
CrossRef citations to date
0
Altmetric
John Stanton Special Issue: Theory Meets Experiment

Active Thermochemical Tables: the thermophysical and thermochemical properties of methyl, CH3, and methylene, CH2, corrected for nonrigid rotor and anharmonic oscillator effects

ORCID Icon & ORCID Icon
Article: e1969046 | Received 14 Jun 2021, Accepted 02 Aug 2021, Published online: 28 Aug 2021

References

  • B. Ruscic and D.H. Bross, Comp. Aided Chem. Eng. 45, 3–114 (2019). doi:10.1016/B978-0-444-64087-1.00001-2.
  • B. Ruscic, J. Phys. Chem. A. 117, 11940–11953 (2013). doi:10.1021/jp403197t.
  • L.V. Gurvich, I.V. Veyts and C.B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989).
  • K. Blöndal, K. Sargsyan, D.D. Bross, B. Ruscic and C.F. Goldsmith, Adsorbate Partition Functions via Phase Space Integration: Quantifying the Effect of Translational Anharmonicity on Thermodynamic Properties, J. Phys. Chem. C. (submitted, under review)
  • J.E. Mayer and M. Goeppert Mayer, Statistical Mechanics (Wiley, New York, 1940).
  • M.W. Chase, J. Phys. Chem. Ref. Data Monogr. 9 (1998). doi:10.18434/T42S31.
  • B.J. McBride and S. Gordon, J. Chem. Phys. 35, 2198–2206 (1961). doi:10.1063/1.1732232.
  • B.J. McBride, S. Heimel, J.G. Ehlers and S. Gordon, Thermodynamic Properties to 6000 K for 210 Substances Involving the First 18 Elements. Natl. Aeronaut. Space Admin (Lewis Research Center, Cleveland, OH, 1963).
  • A. Burcat and B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables (Joint Report: ANL-05/20, Argonne National Laboratory, Argonne, IL, USA, and TAE 960 (Technion – Israel Institute of Technology, Haifa, 2005). doi: 10.2172/925269.
  • J.D. Cox, D.D. Wagman and V.A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1989).
  • B. Ruscic, R.E. Pinzon, M.L. Morton, G. von Laszewski, S. Bittner, S.G. Nijsure, K.A. Amin, M. Minkoff and A.F. Wagner, J. Phys. Chem. A. 108, 9979–9997 (2004). doi:10.1021/jp047912y.
  • B. Ruscic, R.E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya and A.F. Wagner, J. Phys. Conf. Ser. 16, 561–570 (2005). doi:10.1088/1742-6596/16/1/078.
  • H.W. Woolley, Phys. Rev. 72, 183–183 (1947). doi:10.1103/PhysRev.72.151.
  • K.S. Stripp and J.G. Kirkwood, J. Chem. Phys. 19, 1131–1133 (1951). doi:10.1063/1.1748490.
  • H.W. Woolley, J. Res. Natl. Bur. Stand. 54, 299–308 (1955). doi:10.6028/jres.054.034.
  • H.W. Woolley, J. Res. Natl. Bur. Stand. 56, 105–110 (1956). doi:10.6028/jres.056.015.
  • R.S. McDowell, J. Chem. Phys. 39, 526–528 (1963). doi:10.1063/1.1734289.
  • H.W. Woolley, J. Res. Natl. Bur. Stand. 92, 35–53 (1987). doi:10.6028/jres.092.004.
  • R.S. McDowell, J. Chem. Phys. 88, 356–361 (1988). doi:10.1063/1.454608.
  • R.S. McDowell, J. Chem. Phys. 93, 2801–2811 (1990). doi:10.1063/1.458865.
  • J.M.L. Martin, J.P. Francois and R. Gijbels, J. Chem. Phys. 95, 8374–8389 (1991). doi:10.1063/1.461265.
  • J.M.L. Martin, J.P. François and R. Gijbels, J. Chem. Phys. 96, 7633–7645 (1992). doi:10.1063/1.462364.
  • B. J. McBride and S. Gordon, FORTRAN IV Program for Calculation of Thermodynamic Data. NASA Techn. Note D 4097, Natl. Aeronaut. Space Admin (Lewis Research Center, Cleveland, OH, 1967).
  • B. J. McBride and S. Gordon, Computer Program for Calculating and Fitting Thermodynamic Functions. NASA Ref. Pub. 1271, Natl. Aeronaut. Space Admin (Lewis Research Center, Cleveland, OH, 1992).
  • B. J. McBride and S. Gordon, Properties and Coefficients: Computer Program for Calculating and Fitting Thermodynamic Functions. Natl. Aeronaut. Space Admin (Lewis Research Center, Cleveland, OH, 1999).
  • D.T. Colbert and W.H. Miller, J. Chem. Phys. 96, 1982–1991 (1992). doi:10.1063/1.462100.
  • D.H. Bross, H.-G. Yu, L.B. Harding and B. Ruscic, J. Phys. Chem. A. 123, 4212–4231 (2019). doi:10.1021/acs.jpca.9b02295.
  • M. E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, J. Phys. Chem. Ref. Data, Monogr. 3 (Natl. Inst. Stand. Technol., Gaithersburg, MD, 1994).
  • M.E. Jacox, J. Phys. Chem. Ref. Data. 27, 115–393 (1998). doi:10.1063/1.556017.
  • M.E. Jacox, J. Phys. Chem. Ref. Data. 32, 1–441 (2003). doi:10.1063/1.1497629.
  • K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979). doi:10.1007/978-1-4757-0961-2
  • V. Barone, J. Chem. Phys. 122, 014108 (2005). doi:10.1063/1.1824881.
  • J. Bloino, M. Biczysko and V. Barone, J. Chem. Theory Comput. 8, 1015–1036 (2012). doi:10.1021/ct200814m.
  • S. Grimme, J. Chem. Phys. 124, 034108 (2006). doi:10.1063/1.2148954.
  • S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 32, 1456–1465 (2011). doi:10.1002/jcc.21759.
  • L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291–309 (2011). doi:10.1021/ct10046k.
  • A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993). doi:10.1063/1.464913.
  • T.H. Dunning, J. Chem. Phys. 90, 1007–1023 (1989). doi:10.1063/1.456153.
  • F. Jensen, J. Chem. Theory Comput. 4, 719–727 (2008). doi:10.1021/ct800013z.
  • R. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys. 54, 724–728 (1971). doi:10.1063/1.1674902.
  • W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys. 56, 2257–2261 (1972). doi:10.1063/1.1677527.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2013).
  • J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J. Quant. Chem. 14, 545–560 (1978). doi:10.1002/qua.560140503.
  • R.J. Bartlett and G.D. Purvis, Int. J. Quant. Chem. 14, 561–581 (1978). doi:10.1002/qua.560140504.
  • K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head-Gordon, Chem. Phys. Lett. 157, 479–483 (1989). doi:10.1016/S0009-2614(89)87395-6.
  • R.J. Bartlett, J.D. Watts, S.A. Kucharski and J. Noga, Chem. Phys. Lett. 165, 513–522 (1990). doi:10.1016/0009-2614(90)87031-L.
  • J. Almlof and P.R. Taylor, J. Chem. Phys. 86, 4070–4077 (1987). doi:10.1063/1.451917.
  • J. Almlof and P.R. Taylor, J. Chem. Phys. 92, 551–560 (1990). doi:10.1063/1.458458.
  • CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, L. Cheng, M.E. Harding, D.A. Matthews, and P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, F. Engel, R. Faber, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, F. Lipparini, T. Metzroth, L.A. Mück, D.P. O’Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J.A. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A.V. Mitin and C. van Wüllen, see www.cfour.de.
  • P.J. Mohr, D.B. Newel and B.N. Taylor, J. Phys. Chem. Ref. Data. 45, 043102 (2016). doi:10.1063/1.4954402.
  • J.D. Cox, Pure Appl. Chem. 54, 1239–1250 (1982). doi:10.1351/pac198254061239.
  • Y. Ren, L. Zhou, A. Mellouki, V. Daele, M. Idir, S.S. Brown, B. Ruscic, R.S. Paton, M. McGillen and A.R. Ravishankara, Atmos. Chem. Phys. (2021). doi:10.5194/acp-2021-228.
  • Y.-C. Chang, B. Xiong, D.H. Bross, B. Ruscic and C.Y. Ng, Phys. Chem. Chem. Phys. 19, 9592–9605 (2017). doi:10.1039/c6cp08200a.
  • P.B. Changala, T.L. Nguyen, J.H. Baraban, G.B. Ellison, J.F. Stanton, D.H. Bross and B. Ruscic, J. Phys. Chem. A. 121, 8799–8806 (2017). doi:10.1021/acs.jpca.7b06221.
  • D. Feller, D.H. Bross and B. Ruscic, J. Phys. Chem. A. 121, 6187–6198 (2017). doi:10.1021/acs.jpca.7b06017.
  • D. Feller, D.H. Bross and B. Ruscic, J. Phys. Chem. A. 123, 3481–3496 (2019). doi:10.1021/acs.jpca.8b12329.
  • B.K. Welch, R. Dawes, D.H. Bross and B. Ruscic, J. Phys. Chem. A. 123, 5673–5682 (2019). doi:10.1021/acs.jpca.9b04381.
  • D.P. Zaleski, R. Sivaramakrishnan, H.R. Weller, N.A. Seifert, D.H. Bross, B. Ruscic, K.B. Moore, S.N. Elliott, A.V. Copan, L.B. Harding, S.J. Klippenstein, R.W. Field and K. Prozument, J. Am. Chem. Soc. 143, 3124–3142 (2021). doi:10.1021/jacs.0c11677.
  • F. Paneth and W. Hofeditz, Chem. Ber. 62B, 1335–1347 (1929). doi:10.1002/cber.19290620537.
  • G. Herzberg and J. Shoosmith, Can. J. Phys. 34, 523–525 (1956). doi:10.1139/p56-059.
  • G. Herzberg, Proc. Roy. Soc. London A. 262, 291–317 (1961). doi:10.1098/rspa.1961.0120.
  • M. Karplus, J. Chem. Phys. 30, 15–18 (1959). doi:10.1063/1.1729866.
  • R.W. Fesenden, J. Phys. Chem. 71, 74–83 (1967). doi:10.1021/j100860a009.
  • L. Andrews and G.C. Pimentel, J. Chem. Phys. 47, 3637–3644 (1967). doi:10.1063/1.1712434.
  • M.E. Jacox, J. Mol. Spectrosc. 66, 272–287 (1977). doi:10.1016/0022-2852(77)90217-X.
  • A.Y. Adam, A. Yachmenev, S.N. Yurchenko and P. Jensen, J. Phys. Chem. A. 123, 4755–4763 (2019). doi:10.1021/acs.jpca.9b02919.
  • C. Yamada, E. Hirota and K. Kawaguchi, J. Chem. Phys. 75, 5256–5264 (1981). doi:10.1063/1.441991.
  • T. Amano, P.F. Bernath, C. Yamada, Y. Endo and E. Hirota, J. Chem. Phys. 77, 5284–5287 (1982). doi:10.1063/1.443797.
  • S. Davis, D.T. Anderson, G. Duxbury and D.J. Nesbitt, J. Chem. Phys. 107, 5661–5675 (1997). doi:10.1063/1.474259.
  • N.E. Triggs, M. Zahedi, J.W. Nibler, P. DeBarber and J.J. Valentini, J. Chem. Phys. 96, 1822–1831 (1992). doi:10.1063/1.462083.
  • M. Zahedi, J.A. Harrison and J.W. Nibler, J. Chem. Phys. 100, 4043–4055 (1994). DOI: 10.1063/1.466342.
  • J. Wormhoudt and K.E. McCurdy, Chem. Phys. Lett. 156, 47–50 (1989). doi:10.1016/0009-2614(89)87078-2.
  • G.A. Bethardy and R.G. Macdonald, J. Chem. Phys. 103, 2863–2872 (1995). doi:10.1063/1.470499.
  • A. Snelson, J. Phys. Chem. 74, 537–544 (1970). doi:10.1021/j100698a011.
  • D.E. Milligan and M.E. Jacox, J. Chem. Phys. 47, 5146–5156 (1967). doi:10.1063/1.1701772.
  • B.K. Cunha de Miranda, C. Alcaraz, M. Elhanine, B. Noller, P. Hemberger, I. Fischer, G.A. Garcia, H. Soldi-Lose, B. Gans, L.A. Vieira Mendes, S. Boyé-Péronne, S. Douin, J. Zabka and P. Botschwina, J. Phys. Chem. A. 114, 4818–4830 (2010). doi:10.1021/jp909422q.
  • D.M. Medvedev, L.B. Harding and S.K. Gray, Mol. Phys. 104, 73–81 (2006). doi:10.1080/00268970500238663.
  • N.J. Labbe, A.W. Jasper, J.A. Miller, S.J. Klippenstein, B. Ruscic, and R. Sivaramakrishnan, High Accuracy Thermochemical Kinetics for H + CH3 (+M) = CH4 (+M), Proc. 10th U. S. Natl. Combustion Meeting, April 23–26, 2017, College Park, MD, Combust. Inst., Pittsburgh, PA, 2017.
  • N. Labbe, A. Jasper, R. Sivaramakrishnan, S.J Klippenstein, J.A Miller, and B. Ruscic, Implications of High Accuracy Thermochemical Kinetics for H + CH3 (+ M) ⇄ CH4 (+ M) on Combustion Models, Proc. 2017 AIChE Annual Meeting, October 29–November 3, 2017, Minneapolis, MN, Paper 273a, AIChE, New York, NY, 2017.
  • B. Ruscic, J. Phys. Chem. A. 119, 7810–7837 (2015). doi:10.1021/acs.jpca.5b01346.
  • Y.-C. Chang, B. Xiong, D.H. Bross, B. Ruscic and C.Y. Ng, Phys. Chem. Chem. Phys. 19, 9592–9605 (2017). doi:10.1039/c6cp08200a.
  • J.A. Blush, P. Chen, R.T. Wiedman and M.G. White, J. Chem. Phys. 98, 3557–3559 (1993). doi:10.1063/1.464077.
  • A.M. Schulenburg, C.H. Alcaraz, G. Grassi and F. Merkt, J. Chem. Phys. 125, 104310 (2006). doi:10.1063/1.2348875.
  • D.R. Stull, JANAF Thermochemical Data (Dow Chem. Co., Midland, 1961).
  • G. Herzberg and J. Shoosmith, Nature. 183, 1801–1802 (1959). doi:10.1038/1831801a0.
  • B. Ruscic, J.E. Boggs, A. Burcat, A.G. Császár, J. Demaison, R. Janoschek, J.M.L. Martin, M.L. Morton, M.J. Rossi, J.F. Stanton, P.G. Szalay, P.R. Westmoreland, F. Zabel and T. Bérces, J. Phys. Chem. Ref. Data. 34, 573–656 (2005). doi:10.1063/1.1724828.
  • J. Berkowitz, J.P. Greene, H. Cho and B. Ruscic, J. Chem. Phys. 86, 1235–1248 (1987). doi:10.1063/1.452213.
  • M.D. Marshall and A.R.W. McKellar, J. Chem. Phys. 85, 3716–3723 (1986). doi:10.1063/1.450943.
  • T. Furtenbacher, G. Czakó, B.T. Sutcliffe, A.G. Császár and V. Szalay, J. Mol. Struct. 780-781, 283–294 (2006). doi:10.1016/j.molstruc.2005.06.052.
  • A.G. Császár, M.L. Leininger and V. Szalay, J. Chem. Phys. 118, 10631–10642 (2003). doi:10.1063/1.1573180.
  • T.J. Sears, P.R. Bunker and A.R.W. McKellar, J. Chem. Phys. 75, 4731–4732 (1981). doi:10.1063/1.442592.
  • T.J. Sears, P.R. Bunker and A.R.W. McKellar, J. Chem. Phys. 77, 5363–5369 (1981). doi:10.1063/1.443784.
  • A.R.W. McKellar, C. Yamada and E. Hirota, J. Chem. Phys. 79, 1220–1223 (1983). doi:10.1063/1.44592.
  • H. Petek, D.J. Nesbitt, D.C. Darwin, P.R. Ogilby, C.B. Moore and D.A. Ramsay, J. Chem. Phys. 91, 6566–6578 (1989). doi:10.1063/1.457375.
  • B. Ruscic and D.H. Bross, Active Thermochemical Tables (ATcT) Values Based on Ver. 1.122p of the Thermochemical Network (Argonne National Laboratory, Lemont, IL, 2020). available at ATcT.anl.gov.
  • P. Jensen and P.R. Bunker, J. Chem. Phys. 89, 1327–1332 (1988). doi:10.1063/1.455184.
  • P.R. Bunker, P. Jensen, W.P. Kraemer and R. Beardsworth, J. Chem. Phys. 85, 3724–3731 (1986). doi:10.1063/1.450944.
  • H. Petek, D.J. Nesbitt, C.B. Moore, F.W. Birss and D.A. Ramsay, J. Chem. Phys. 86, 1189–1205 (1987). doi:10.1063/1.452264.
  • H. Petek, D.J. Nesbitt, D.C. Darwin, P.R. Ogilby, C.B. Moore and D.A. Ramsay, J. Chem. Phys. 91, 6566–6578 (1989). doi:10.1063/1.457375.
  • G. Herzberg and J.W.C. Johns, Proc. Roy. Soc. London A. 295, 107–128 (1966). doi:10.1098/rspa.1966.0229.
  • H. Petek, D.J. Nesbitt, D.C. Darwin and C.B. Moore, J. Chem. Phys. 86, 1172–1188 (1987). doi:10.1063/1.452263.
  • P. Jensen, M. Brumm, W.P. Kraemer and P.R. Bunker, J. Mol. Spectrosc. 171, 31–57 (1995). doi:10.1006/jmsp.1995.1101.
  • G.V. Hartland, D. Qin and H.-L. Dai, J. Chem. Phys. 98, 2469–2473 (1993). doi:10.1063/1.464176.
  • C.-H. Chang, J. Xin, T. Latsha, E. Otruba, Z. Wang, G.E. Hall, T.J. Sears and B.-C. Chang, J. Phys. Chem. A. 115, 9440–9446 (2011). doi:10.1021/jp1115965.
  • Y. Yamaguchi, C.D. Sherrill and H.F. Schaefer, J. Phys. Chem. 100, 7911–7918 (1996). doi:10.1021/jp953150i.
  • G. Duxbury and C.H. Jungen, Mol. Phys. 63, 981–998 (1988). doi:10.1080/00268978800100721.
  • J.-P. Gu, G. Hirsch, R.J. Buenker, M. Brumm, G. Osmann, P.R. Bunker and P. Jensen, J. Mol. Struct. 517-518, 247–264 (2000). doi:10.1016/S0022-2860(99)00256-2.
  • G. Herzberg and J.W.C. Johns, Proc. Roy. Soc. London. A295, 107–128 (1966). doi:10.1098/rspa.1966.0229.
  • Y. Kim, A.V. Komissarov, G.E. Hall and T.J. Sears, J. Chem. Phys. 123, 024306 (2005). doi:10.1063/1.1988289.
  • Y. Kim, G.E. Hall and T.J. Sears, J. Mol. Spectrosc. 240, 269-271 (2006). doi:10.1016/j.jms.2006.10.008.
  • P.R. Bunker, P. Jensen, Y. Yamaguchi and H.F. Schaefer, J. Mol. Spectrosc. 179, 263–268 (1996). doi:10.1006/jmsp.1996.0205.
  • L.V. Gurvich, I.V. Veyts and C.B. Alcock, Thermodynamic Properties of Individual Substances, Vol. 2, Part Two, 4th edition (Hemisphere, New York, 1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.