Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 120, 2022 - Issue 19-20: Special Issue of Molecular Physics in Memory of Lutosław Wolniewicz
296
Views
1
CrossRef citations to date
0
Altmetric
Special Issue of Molecular Physics in Memory of Lutosław Wolniewicz

Testing the limitations of harmonic approximation in the determination of Raman intensities

ORCID Icon, & ORCID Icon
Article: e2069613 | Received 29 Jan 2022, Accepted 08 Apr 2022, Published online: 04 May 2022

References

  • G. Placzek, Handb. Radiol. Akad. Verlagsgesselschaft VI 2, 209–374 (1934).
  • E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover Publications, New York, 1955).
  • B.A. Hess, L.J. Schaad, P. Carsky and R. Zahradnik, Chem. Rev. 86, 709–730 (1986). doi:10.1021/cr00074a004
  • M.D. Halls, J. Velkovski and H.B. Schlegel, Theor. Chem. Acc. 105, 413–421 (2001). doi:10.1007/s002140000204
  • A.P. Scott and L. Radom, J. Phys. Chem. 100, 16502–16513 (1996). doi:10.1021/jp960976r
  • K.K. Irikura, R.D. Johnson and R.N. Kacker, J. Phys. Chem. A 109, 8430–8437 (2005). doi:10.1021/jp052793n
  • NIST Standard Reference Database 101, CCCBD: Precomputed vibrational scaling factors, NIST https://cccbdb.nist.gov/vibscalejust.asp.
  • M.W. Wong, Chem. Phys. Lett. 256, 391–399 (1996). doi:10.1016/0009-2614(96)00483-6
  • J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A 111, 11683–11700 (2007). doi:10.1021/jp073974n
  • R.D. Johnson, K.K. Irikura, R.N. Kacker and R. Kessel, J. Chem. Theory Comput. 6, 2822–2828 (2010). doi:10.1021/ct100244d
  • D.O. Kashinski, G.M. Chase, R.G. Nelson, O.E.D. Nallo, A.N. Scales, D.L. VanderLey and E.F.C. Byrd, J. Phys. Chem. A 121, 2265–2273 (2017). doi:10.1021/acs.jpca.6b12147
  • H.K. Dhah, Ph.D. Dissertation, University of Tennessee Knoxville, TN, USA, 2018.
  • Y. Cornaton, M. Ringholm, O. Louant and K. Ruud, Phys. Chem. Chem. Phys. 18 (5), 4201–4215 (2016). doi:10.1039/C5CP06657C
  • R. Herman and R.F. Wallis, J. Chem. Phys. 23, 637–646 (1955). doi:10.1063/1.1742069
  • T.C. James and W. Klemperer, J. Chem. Phys. 31, 2664–2669 (1959). doi:10.1063/1.1730279.
  • C. Asawaroengchai and G.M. Rosenblatt, J. Chem. Phys. 72, 2664–2669 (1980). doi:10.1063/1.439412
  • H. Hamaguchi, I. Suzuki and A.D. Buckingham, Mol. Phys. 43, 963–973 (2006). doi:10.1080/00268978100101791
  • H. Hamaguchi, A.D. Buckingham and W.J. Jones, Mol. Phys. 43, 1311–1319 (2006). doi:10.1080/00268978100102081
  • H. Hamaguchi, A.D. Buckingham and W.J. Jones, Mol. Phys. 46, 1093–1098 (2006). doi:10.1080/00268978200101821
  • A. Raj, H.A. Witek and H. Hamaguchi, Mol. Phys. 118, e1632950 (2019). doi:10.1080/00268976.2019.1632950.
  • J. Rychlewski, Mol. Phys. 41, 833–842 (2006). doi:10.1080/00268978000103191
  • J. Rychlewski, Chem. Phys. Lett. 73, 135–138 (1980). doi:10.1016/0009-2614(80)85220-1
  • J. Rychlewski, J. Chem. Phys. 78, 7252–7259 (1983). doi:10.1063/1.444713
  • H. Ågren, O. Vahtras and B. Minaev, Adv. Quantum Chem. 27, 71–162 (1996). doi:10.1016/S0065-3276(08)60251-8
  • P. Jørgensen, H.J.A. Jensen and J. Olsen, J. Chem. Phys. 89, 3654–3661 (1988). doi:10.1063/1.454885
  • J. Olsen, D.L. Yeager and P. Jørgensen, J. Chem. Phys. 91, 381–388 (1989). doi:10.1063/1.457471
  • T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory (John Wiley & Sons, New York, 2000).
  • A. Raj, H. Hamaguchi and H.A. Witek, J. Chem. Phys. 148, 104308 (2018). doi:10.1063/1.5011433
  • O. Christiansen, A. Halkier, H. Koch, P. Jørgensen and T. Helgaker, J. Chem. Phys. 108, 2801–2816 (1998). doi:10.1063/1.475671
  • K. Aidas, C. Angeli, K.L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E.K. Dalskov, U. Ekström, T. Enevoldsen, J.J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A.C. Hennum, H. Hettema, E. Hjertenaes, S. Høst, I.M. Høyvik, M.F. Iozzi, B. Jansık, H.J.A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O.B. Lutnaes, J.I. Melo, K.V. Mikkelsen, R.H. Myhre, C. Neiss, C.B. Nielsen, P. Norman, J. Olsen, J.M.H. Olsen, A. Osted, M.J. Packer, F. Pawlowski, T.B. Pedersen, P.F. Provasi, S. Reine, Z. Rinkevicius, T.A. Ruden, K. Ruud, V.V. Rybkin, P. Sałek, C.C.M. Samson, A.S. de Merás, T. Saue, S.P.A. Sauer, B. Schimmelpfennig, K. Sneskov, A.H. Steindal, K.O. Sylvester-Hvid, P.R. Taylor, A.M. Teale, E.I. Tellgren, D.P. Tew, A.J. Thorvaldsen, L. Thøgersen, O. Vahtras, M.A. Watson, D.J.D. Wilson, M. Ziolkowski and H. Ågren, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 269–284 (2013). doi:10.1002/wcms.1172.
  • S.L. Mielke, B.C. Garrett and K.A. Peterson, J. Chem. Phys. 116, 4142–4161 (2002). doi:10.1063/1.1432319
  • B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson and T.L. Windus, J. Chem. Inf. Model. 59, 4814–4820 (2019). doi:10.1021/acs.jcim.9b00725
  • K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T.L. Windus, J. Chem. Inf. Model. 47, 1045–1052 (2007). doi:10.1021/ci600510j
  • K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head-Gordon, Chem. Phys. Lett. 157, 479–483 (1989). doi:10.1016/S0009-2614(89)87395-6
  • R.J. Bartlett, J. Watts, S. Kucharski and J. Noga, Chem. Phys. Lett. 165, 513–522 (1990). doi:10.1016/0009-2614(90)87031-L
  • T.H. Dunning, J. Chem. Phys. 90, 1007–1023 (1989). doi:10.1063/1.456153
  • R.A. Kendall, T.H. Dunning and R.J. Harrison, J. Chem. Phys. 96, 6796–6806 (1992). doi:10.1063/1.462569
  • D.A. Matthews, L. Cheng, M.E. Harding, F. Lipparini, S. Stopkowicz, T.C. Jagau, P.G. Szalay, J. Gauss and J.F. Stanton, J. Chem. Phys. 152, 214108 (2020). doi:10.1063/5.0004837
  • J.F. Stanton, J. Gauss, L. Cheng, M.E. Harding, D.A. Matthews, P.G. Szalay, CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package with contributions from A.A. Auer, A. Asthana, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, S. Blaschke, Y.J. Bomble, S. Burger, O. Christiansen, D. Datta, F. Engel, R. Faber, J. Greiner, M. Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, K. Klein, G.M. Kopper, W.J. Lauderdale, F. Lipparini, J. Liu, T. Metzroth, L.A. Mück, D.P. O'Neill, T. Nottoli, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang and J.D. Watts, the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen, For the current version, see https://www.cfour.de.
  • D.R. Hartree and W. Hartree, Proc. R. Soc. London, Ser. A 150, 9–33 (1935). doi:10.1098/rspa.1935.0085
  • D. Hegarty and M.A. Robb, Mol. Phys. 38, 1795–1812 (1979). doi:10.1080/00268977900102871
  • M. Frisch, I.N. Ragazos, M.A. Robb and H.B. Schlegel, Chem. Phys. Lett. 189, 524–528 (1992). doi:10.1016/0009-2614(92)85244-5
  • J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235–3264 (1985). doi:10.1063/1.448223
  • H.J.A. Jensen, P. Jørgensen and H. Ågren, J. Chem. Phys. 87, 451–466 (1987). doi:10.1063/1.453590
  • J. Olsen, Int. J. Quantum Chem. 111, 3267–3272 (2011). doi:10.1002/qua.23107
  • P. Hohenberg and W. Kohn, Phys. Rev. 136, B864–B871 (1964). doi:10.1103/PhysRev.136.B864
  • W. Kohn and L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965). doi:10.1103/PhysRev.140.A1133
  • R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (International Series of Monographs on Chemistry) (Oxford University Press, New York, USA, 1994).
  • A.D. Becke, J. Chem. Phys. 140, 18A301 (2014). doi:10.1063/1.4869598
  • J. Noga and R.J. Bartlett, J. Chem. Phys. 86, 7041–7050 (1987). doi:10.1063/1.452353
  • G.E. Scuseria and H.F. Schaefer, Chem. Phys. Lett. 152, 382–386 (1988). doi:10.1016/0009-2614(88)80110-6
  • J. Gauss and J.F. Stanton, Phys. Chem. Chem. Phys. 2, 2047–2060 (2000). doi:10.1039/a909820h
  • A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993). doi:10.1063/1.464913
  • P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem. 98, 11623–11627 (1994). doi:10.1021/j100096a001
  • S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200–1211 (1980). doi:10.1139/p80-159
  • C. Lee, W. Yang and R.G. Parr, Phys. Rev. B 37, 785–789 (1988). doi:10.1103/PhysRevB.37.785
  • L. Wolniewicz, J. Chem. Phys. 99, 1851–1868 (1993). doi:10.1063/1.465303
  • P.M. Morse, Phys. Rev. 34, 57–64 (1929). doi:10.1103/PhysRev.34.57
  • Y.P. Varshni, Rev. Mod. Phys. 29, 664–682 (1957). doi:10.1103/RevModPhys.29.664
  • R. Rydberg, Z. Angew. Phys. 73, 376–385 (1932). doi:10.1007/%2Fbf01341146.
  • H.Y. Abdullah, Bull. Mater. Sci. 42, 57 (2019). doi:10.1007/s12034-019-1740-5
  • J.P. Araújo and M.Y. Ballester, Int. J. Quantum Chem. 121, e26808 (2021). doi:10.1002/qua.26808.
  • K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Van Nostrand, New York, USA, 1979).
  • U.M. Ascher and L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009).
  • E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems (Springer-Verlag, Berlin, Heidelberg, 1993).
  • C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Rıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke and T.E. Oliphant, Nature 585, 357–362 (2020). doi:10.1038/s41586-020-2649-2
  • T.E. Oliphant, Guide to NumPy (Trelgol Publishing, USA, 2006).
  • W.H. Press, S.A. Teukolsky, B.P. Flannery and W.T. Vetterling, Numerical Recipes in Fortran (The Art of Scientific Computing) (Cambridge University Press, New York, 1993), pp. 140–150.
  • T.N.L. Patterson, Math. Comput. 22, 847–856 (1968). doi:10.1090/mcom/1968-22-104
  • T.N.L. Patterson, Math. Comput. 23, 892 (1969). doi:10.1090/mcom/1969-23-108
  • R. Piessens, E. de Doncker-Kapenga, C. Überhuber and D. Kahaner, Quadpack – A Subroutine Package for Automatic Integration (Springer-Verlag, Berlin, Heidelberg, 1983).
  • A. Raj and Y.B. Chao, A repository containing a Python module and sets of functions for PES determination from expt. data on transition frequencies, computing polarizability matrix elements and Raman intensities, https://github.com/ankit7540/Raman-Intensity-Approxmn-Test (accessed December 23, 2021) (2022).
  • P. Schwerdtfeger and J.K. Nagle, Mol. Phys. 117, 1200–1225 (2019). doi:10.1080/00268976.2018.1535143
  • G. Maroulis, Chem. Phys. Lett. 442, 265–269 (2007). doi:10.1016/j.cplett.2007.06.024
  • A. Raj, H.A. Witek and H. Hamaguchi, J. Raman Spectrosc. 52, 1032–1047 (2021). doi:10.1002/jrs.v52.5
  • D.A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley & Sons Ltd, Chichester, England, 2002).
  • A. Raj, H.A. Witek and H. Hamaguchi, Asian J. Phys. 30, 321–335 (2021).
  • A. Raj, C. Kato, H.A. Witek and H. Hamaguchi, J. Raman Spectrosc. 51, 2066–2082 (2020). doi:10.1002/jrs.v51.10
  • A. Raj, C. Kato, H.A. Witek and H. Hamaguchi, J. Raman Spectrosc. 52, 2038–2050 (2021). doi:10.1002/jrs.v52.12
  • E. Jones, T.E. Oliphant and P. Peterson et al., SciPy: Open source scientific tools for Python 2001, https://www.scipy.org/ (accessed February 22, 2019).
  • P. Virtanen, R. Gommers and T.E. Oliphant et al., Nat. Methods 17, 261–272 (2020). doi:10.1038/s41592-019-0686-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.