1,350
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Testing Measurement Invariance with Ordinal Missing Data: A Comparison of Estimators and Missing Data Techniques

, , , &

References

  • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. Advanced Structural Equation Modeling: Issues and Techniques, 243, 277.
  • Asparouhov, T., & Muthén, B. O. (2006). Robust chi square difference testing with mean and variance adjusted test statistics. Mplus Web Notes No. 10. Retrieved from http://www.statmodel.com/download/webnotes/webnote10.pdf.
  • Asparouhov, T., & Muthén, B. O. (2010a). Multiple imputation with Mplus. Mplus Technical Appendix. Retrieved from http://www.statmodel.com/download/Imputations7.pdf.
  • Asparouhov, T., & Muthén, B. O. (2010b). Simple second order chi-square correction. Mplus Technical Appendix. Retrieved from https://www.statmodel.com/download/WLSMV_new_chi21.pdf
  • Asparouhov, T., & Muthén, B. O. (2016). IRT in Mplus. Mplus Technical report. Retrieved from http://www.statmodel.com/download/MplusIRT.pdf
  • Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley.
  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.
  • Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464–504. doi: 10.1080/10705510701301834
  • Chen, P. Y., & Yao, G. (2015). Measuring quality of life with fuzzy numbers: In the perspectives of reliability, validity, measurement invariance, and feasibility. Quality of Life Research, 24(4), 781–785. doi: 10.1007/s11136-014-0816-3
  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. doi: 10.1207/S15328007SEM0902_5
  • DiStefano, C., & Morgan, G. B. (2014). A comparison of diagonal weighted least squares robust estimation techniques for ordinal data. Structural Equation Modeling, 21(3), 425–438. doi: 10.1080/10705511.2014.915373
  • Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.
  • Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466. doi: 10.1037/1082-989X.9.4.466
  • Fokkema, M., Smits, N., Kelderman, H., & Cuijpers, P. (2013). Response shifts in mental health interventions: An illustration of longitudinal measurement invariance. Psychological Assessment, 25(2), 520. doi: 10.1037/a0031669
  • Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10(1), 80–100. doi: 10.1207/S15328007SEM1001_4
  • Jia, F. (2016). Methods for handling missing non-normal data in structural equation modeling (Unpublished doctoral dissertation). University of Kansas, Lawrence, KS.
  • Jorgensen, T. D., Kite, B. A., Chen, P. Y., & Short, S. D. (2018). Permutation randomization methods for testing measurement equivalence and detecting differential item functioning in multiple-group confirmatory factor analysis. Psychological Methods, 23(4), 708–728. doi: 10.1037/met0000152
  • Kaplan, D. (2014). Bayesian statistics for the social sciences New York, NY: Guilford.
  • Kite, B. A., Johnson, P. E., & Chong, X. (2017). Replicating the Mplus DIFFTEST procedure: An R function to reproduce nested model comparisons. Retrieve from http://crmda.dept.ku.edu/guides/44.difftest/44.difftest.html.
  • Kline, R. B. (2015). Principles and practice of structural equation modeling. New York, NY: Guilford.
  • Li, C.-H. (2014). The performance of MLR, USLMV, and WLSMV estimation in structural regression models with ordinal variables (Unpublished doctoral dissertation). Michigan State University, East Lansing, MI.
  • Li, C. H. (2016). The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychological Methods, 21(3), 369–387. doi: 10.1037/met0000093
  • Liu, Y., Millsap, R. E., West, S. G., Tein, J. Y., Tanaka, R., & Grimm, K. J. (2017). Testing measurement invariance in longitudinal data with ordered-categorical measures. Psychological Methods, 22(3), 486–506. doi: 10.1037/met0000075
  • Marsh, H. W. (1998). Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes. Structural Equation Modeling, 5(1), 22–36. doi: 10.1080/10705519809540087
  • Meade, A. W., & Lautenschlager, G. J. (2004). A comparison of item response theory and confirmatory factor analytic methodologies for establishing measurement equivalence/invariance. Organizational Research Methods, 7(4), 361–388. doi: 10.1177/1094428104268027
  • Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58(4), 525–543. doi: 10.1007/BF02294825
  • Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York, NY: Routledge.
  • Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115–132. doi: 10.1007/BF02294210
  • Muthén, B. O., De Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes (Unpublished Technical Report). Retrieved from https://www.statmodel.com/download/Article_075.pdf
  • Muthén, B. O., & Satorra, A. (1995). Technical aspects of Muthén's LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60(4), 489–503. doi: 10.1007/BF02294325
  • Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th ed.). Los Angeles, CA: Author.
  • Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443–460. doi: 10.1007/BF02296207
  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
  • Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373. doi: 10.1037/a0029315
  • Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, No 17.
  • Sass, D. A., Schmitt, T. A., & Marsh, H. W. (2014). Evaluating model fit with ordered categorical data within a measurement invariance framework: A comparison of estimators. Structural Equation Modeling, 21(2), 167–180. doi: 10.1080/10705511.2014.882658
  • Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507–514. doi: 10.1007/BF02296192
  • Savalei, V. (2014). Understanding robust corrections in structural equation modeling. Structural Equation Modeling, 21(1), 149–160. doi: 10.1080/10705511.2013.824793
  • Savalei, V., & Bentler, P. M. (2005). A statistically justified pairwise ML method for incomplete nonnormal data: A comparison with direct ML and pairwise ADF. Structural Equation Modeling, 12(2), 183–214. doi: 10.1207/s15328007sem1202_1
  • Savalei, V., & Falk, C. F. (2014). Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data. Structural Equation Modeling, 21(2), 280–302. doi: 10.1080/10705511.2014.882692
  • Suh, Y. (2015). The performance of maximum likelihood and weighted least square mean and variance adjusted estimators in testing differential item functioning with nonnormal trait distributions. Structural Equation Modeling, 22(4), 568–580. doi: 10.1080/10705511.2014.937669
  • Takane, Y., & De Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52(3), 393–408. doi: 10.1007/BF02294363
  • Teman, E. D. (2012). The performance of multiple imputation and full information maximum likelihood for missing ordinal data in structural equation models Ann Arbor, MI: ProQuest.
  • Widaman, K. F., Grimm, K. J., Early, D. R., Robins, R. W., & Conger, R. D. (2013). Investigating factorial invariance of latent variables across populations when manifest variables are missing completely. Structural Equation Modeling, 20(3), 384–408. doi: 10.1080/10705511.2013.797819
  • Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12(1), 58. doi: 10.1037/1082-989X.12.1.58
  • Wu, W., Jia, F., & Enders, C. (2015). A comparison of imputation strategies for ordinal missing data on Likert scale variables. Multivariate Behavioral Research, 50(5), 484–503. doi: 10.1080/00273171.2015.1022644
  • Yuan, K. H., & Bentler, P. M. (2000). Three likelihood‐based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165–200. doi: 10.1111/0081-1750.00078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.