791
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Unique Variable Analysis: A Network Psychometrics Method to Detect Local DependenceOpen DataOpen Materials

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16, 397–438. https://doi.org/10.1080/10705510903008204
  • Aust, F., & Barth, M. (2022). papaja: Create APA manuscripts with R Markdown. https://github.com/crsh/papaja
  • Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16, 5–13. https://doi.org/10.1002/wps.20375
  • Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., Robinaugh, D. J., Perugini, M., Dalege, J., Costantini, G., & Isvoranu, A. M. (2021). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), 1–18. https://doi.org/10.1038/s43586-021-00055-w
  • Briganti, G., Williams, D. R., Mulder, J., & Linkowski, P. (2022). Bayesian network structure and predictability of autistic traits. Psychological Reports, 125(1), 344–357. https://doi.org/10.1177/0033294120978159
  • Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T., & Snippe, E. (2019). What do centrality measures measure in psychology networks? Journal of Abnormal Psychology, 128, 892–903. https://doi.org/10.1037/abn0000446
  • Chang, W., Cheng, J. J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., & Borges, B. (2022). shiny: Web Application Framework for R. https://CRAN.R-project.org/package=shiny
  • Chen, J., & Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95, 759–771. https://doi.org/10.1093/biomet/asn034
  • Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22(3), 265–289. https://doi.org/10.3102/10769986022003265
  • Christensen, A. P., & Golino, H. (2021). On the equivalency of factor and network loadings. Behavior Research Methods, 53, 1563–1580. https://doi.org/10.3758/s13428-020-01500-6
  • Christensen, A. P., Golino, H., & Silvia, P. J. (2020). A psychometric network perspective on the validity and validation of personality trait questionnaires. European Journal of Personality, 34, 1095–1108. https://doi.org/10.1002/per.2265
  • Christensen, A. P., Nieto Canaveras, M. D., Golino, H., Garrido, L. E., Jimenez, M., Abad, F., Garcia-Garzon, E., & Franco, V. R. (2022). latentFactoR: Data simulation based on latent factors.
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
  • Comrey, A. L., & Lee, H. B. (2013). A first course in factor analysis (2nd ed.). Psychology Press.
  • Cramer, A. O. J. (2012). Why the item “23 + 1” is not in a depression questionnaire: Validity from a network perspective. Measurement: Interdisciplinary Research & Perspective, 10, 50–54. https://doi.org/10.1080/15366367.2012.681973
  • Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., Kendler, K. S., & Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26, 414–431. https://doi.org/10.1002/per.1866
  • DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). SAGE Publications.
  • Edwards, M. C., Houts, C. R., & Cai, L. (2018). A diagnostic procedure to detect departures from local independence in item response theory models. Psychological Methods, 23(1), 138–149. https://doi.org/10.1037/met0000121
  • Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23, 617–634. https://doi.org/10.1037/met0000167
  • Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for. PLoS One, 12(6), e0179891. https://doi.org/10.1371/journal.pone.0179891
  • Epskamp, S., Maris, G., Waldrop, L. J., & Borsboom, D. (2018). Network psychometrics. In P. Irwing, D. Hughes, & T. Booth (Eds.), The Wiley handbook of psychometric testing, 2 volume set: A multidisciplinary reference on survey, scale and test development (pp. 953–986). Wiley. https://doi.org/10.1002/9781118489772.ch30
  • Epskamp, S. (2019). psychonetrics: Structural equation modeling and confirmatory network analysis. R package verson 0.3.3. https://CRAN.R-project.org/package=psychonetrics
  • Ferrando Piera, P. J., & Lorenzo Seva, U. (2017). Program FACTOR at 10: Origins, development and future directions. Psicothema, 29(2), 236–240. https://doi.org/10.7334/psicothema2016.304
  • Ferrando, P. J., Hernandez-Dorado, A., & Lorenzo-Seva, U. (2022). Detecting correlated residuals in exploratory factor analysis: New proposals and a comparison of procedures. Structural Equation Modeling: A Multidisciplinary Journal, 29(4), 630–638. https://doi.org/10.1080/10705511.2021.2004543
  • Flake, J. K., Pek, J., & Hehman, E. (2017). Construct validation in social and personality research: Current practice and recommendations. Social Psychological and Personality Science, 8, 370–378. https://doi.org/10.1177/1948550617693063
  • Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems (pp. 604–612). Retrieved from https://papers.nips.cc/paper/4087-extended-bayesian-information-criteria-for-gaussian-graphical-models
  • Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12(6), 999–1020. https://doi.org/10.1177/1745691617705892
  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432–441. https://doi.org/10.1093/biostatistics/kxm045
  • Friedman, J., Hastie, T., & Tibshirani, R. (2014). glasso: Graphical lasso – estimation of Gaussian graphical models. https://CRAN.R-project.org/package=glasso
  • García-Garzón, E., Abad, F. J., & Garrido, L. E. (2019). Improving bi-factor exploratory modeling: Empirical target rotation based on loading differences. Methodology, 15, 45–55. https://doi.org/10.1027/1614-2241/a000163
  • Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011). Performance of Velicer’s minimum average partial factor retention method with categorical variables. Educational and Psychological Measurement, 71, 551–570. https://doi.org/10.1177/0013164410389489
  • Golino, H., & Epskamp, S. (2017). Exploratory Graph Analysis: A new approach for estimating the number of dimensions in psychological research. PLoS One, 12, e0174035. https://doi.org/10.1371/journal.pone.0174035
  • Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., Thiyagarajan, J. A., & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. Psychological Methods, 25, 292–320. https://doi.org/10.1037/met0000255
  • Guttman, L. (1953). Image theory for the structure of quantitative variates. Psychometrika, 18, 277–296.
  • Gysi, D. M., Voigt, A., de Miranda Fragoso, T., Almaas, E., & Nowick, K. (2018). wTO: An R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinformatics, 19, 392. https://doi.org/10.1186/s12859-018-2351-7
  • Hallquist, M. N., Wright, A. G. C., & Molenaar, P. C. M. (2021). Problems with centrality measures in psychopathology symptom networks: Why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research, 56(2), 199–223. https://doi.org/10.1080/00273171.2019.1640103
  • Houts, C. R., & Edwards, M. C. (2013). The performance of local dependence measures with psychological data. Applied Psychological Measurement, 37(7), 541–562. https://doi.org/10.1177/0146621613491456
  • Hubley, A. M., Zhu, S. M., Sasaki, A., & Gadermann, A. M. (2014). Synthesis of validation practices in two assessment journals: Psychological Assessment and the European Journal of Psychological Assessment. In B. Zumbo & E. Chan (Eds.), Validity and validation in social, behavioral, and health sciences (pp. 193–213). Springer.
  • Hurley, R. S. E., Losh, M., Parlier, M., Reznick, J. S., & Piven, J. (2007). The broad autism phenotype questionnaire. Journal of Autism and Developmental Disorders, 37(9), 1679–1690. https://doi.org/10.1007/s10803-006-0299-3
  • Isvoranu, A.-M., & Epskamp, S. (2021). Which estimation method to choose in network psychometrics? Deriving guidelines for applied researchers. Psychological Methods, https://doi.org/10.1037/met0000439
  • Jamison, L., Christensen, A. P., & Golino, H. (2022). Metric invariance in exploratory graph analysis via permutation testing. PsyArXiv. https://doi.org/10.31234/osf.io/j4rx9
  • Jiménez, M., Abad, F. J., Garcia-Garzon, E., Golino, H., Christensen, A. P., & Garrido, L. E. (2022). Dimensionality assessment in generalized bi-factor structures: A network psychometrics approach. PsyArXiv. https://doi.org/10.31234/osf.io/2ujdk
  • Kaplan, D. (1989). Model modification in covariance structure analysis: Application of the expected parameter change statistic. Multivariate Behavioral Research, 24(3), 285–305. https://doi.org/10.1207/s15327906mbr2403_2
  • Kassambara, A. (2018). ggpubr: ‘ggplot2’ based publication ready plots. https://CRAN.R-project.org/package=ggpubr
  • Lauritzen, S. L. (1996). Graphical models. Clarendon Press.
  • Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple-factor analysis. Psychometrika, 2(2), 85–93. https://doi.org/10.1007/BF02288062
  • Leising, D., Burger, J., Zimmermann, J., Bäckström, M., Oltmanns, J., & Connelly, B. (2020). Why do items correlate with one another? A conceptual analysis with relevance for general factors and network models. PsyArXiv, https://doi.org/10.31234/osf.io/7c895
  • Letina, S., Blanken, T. F., Deserno, M. K., & Borsboom, D. (2019). Expanding network analysis tools in psychological networks: Minimal spanning trees, participation coefficients, and motif analysis applied to a network of 26 psychological attributes. Complexity, 2019, 1–27. https://doi.org/10.1155/2019/9424605
  • Marinazzo, D., Van Roozendaal, J., Rosas, F. E., Stella, M., Comolatti, R., Colenbier, N., Stramaglia, S., & Rosseel, Y. (2022). An information-theoretic approach to hypergraph psychometrics. https://arxiv.org/abs/2205.01035
  • McDonald, R. P. (1985). Factor analysis and related methods. Psychology Press.
  • Montoya, A. K., & Edwards, M. C. (2020). The poor fit of model fit for selecting number of factors in exploratory factor analysis for scale evaluation. Educational and Psychological Measurement, 81(3), 413–440. https://doi.org/10.1177/0013164420942899
  • Mulaik, S. A. (2010). Foundations of factor analysis (2nd ed.). CRC press. https://doi.org/10.1201/b15851
  • Muraki, E., & Carlson, J. E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19(1), 73–90. https://doi.org/10.1177/014662169501900109
  • Nowick, K., Gernat, T., Almaas, E., & Stubbs, L. (2009). Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22358–22363. https://doi.org/10.1073/pnas.0911376106
  • Pérez, M.-E., & Pericchi, L. R. (2014). Changing statistical significance with the amount of information: The adaptive α significance level. Statistics & Probability Letters, 85, 20–24. https://doi.org/10.1016/j.spl.2013.10.018
  • R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A.-L. (2002). Hierarchical organization of modularity in metabolic networks. Science (New York, N.Y.), 297(5586), 1551–1555. https://doi.org/10.1126/science.1073374
  • Reise, S. P., Bonifay, W., & Haviland, M. G. (2018). Bifactor modelling and the evaluation of scale scores. In P. Irwing, T. Booth, & D. J. Hughes (Eds.), The Wiley handbook of psychometric testing (pp. 675–707). Wiley. https://doi.org/10.1002/9781118489772.ch22
  • Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research. Northwestern University. https://CRAN.R-project.org/package=psych
  • Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373. https://doi.org/10.1037/a0029315
  • Rosenbusch, H., Wanders, F., & Pit, I. L. (2020). The Semantic Scale Network: An online tool to detect semantic overlap of psychological scales and prevent scale redundancies. Psychological Methods, 25(3), 380–392. https://doi.org/10.1037/met0000244
  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36. https://doi.org/10.18637/jss.v048.i02
  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
  • Saris, W. E., Satorra, A., & Sörbom, D. (1987). The detection and correction of specification errors in structural equation models. Sociological Methodology, 17, 105–129. https://doi.org/10.2307/271030
  • Saris, W., E., Satorra, A., Veld, W., & M., van der. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling: A Multidisciplinary Journal, 16, 561–582. https://doi.org/10.1080/10705510903203433
  • van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4, 5918. https://doi.org/10.1038/srep05918
  • Waldorp, L., & Marsman, M. (2021). Relations between networks, regression, partial correlation, and the latent variable model. Multivariate Behavioral Research, 57(6), 994–1006. https://doi.org/10.1080/00273171.2021.1938959
  • Whittaker, T. A. (2012). Using the modification index and standardized expected parameter change for model modification. The Journal of Experimental Education, 80(1), 26–44. https://doi.org/10.1080/00220973.2010.531299
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. https://ggplot2-book.org/
  • Williams, D. R. (2021). Bayesian estimation for Gaussian graphical models: Structure learning, predictability, and network comparisons. Multivariate Behavioral Research, 56(2), 336–352. https://doi.org/10.1080/00273171.2021.1894412
  • Williams, D. R., & Mulder, J. (2020). BGGM: Bayesian Gaussian graphical models in R. Journal of Open Source Software, 5(51), 2111. https://doi.org/10.21105/joss.02111
  • Williams, D. R., & Rast, P. (2018). Back to the basics: Rethinking partial correlation network methodology. Journal of Mathematical and Statistical Psychology, 73(2), 187–212. https://doi.org/10.1111/bmsp.12173
  • Williams, D. R., Rhemtulla, M., Wysocki, A. C., & Rast, P. (2019). On nonregularized estimation of psychological networks. Multivariate Behavioral Research, 54(5), 719–750. https://doi.org/10.1080/00273171.2019.1575716
  • Williams, D. R., & Rodriguez, J. E. (2022). Why overfitting is not (usually) a problem in partial correlation networks. Psychological Methods, 27(5), 822–840. https://doi.org/10.1037/met0000437
  • Wood, J. M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1(4), 354–365. https://doi.org/10.1037/1082-989X.1.4.354
  • Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125–145. https://doi.org/10.1177/014662168400800201
  • Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4, 17. https://doi.org/10.2202/1544-6115.1128
  • Zhang, G., Trichtinger, L. A., Lee, D., & Jiang, G. (2022). PolychoricRM: A computationally efficient r function for estimating polychoric correlations and their asymptotic covariance matrix. Structural Equation Modeling: A Multidisciplinary Journal, 29(2), 310–320. https://doi.org/10.1080/10705511.2021.1929996

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.