1,090
Views
28
CrossRef citations to date
0
Altmetric
Ecology

Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 185-199 | Received 13 Nov 2016, Accepted 07 Feb 2017, Published online: 27 Apr 2017

Literature cited

  • Atkinson TH. 2014. Bark and ambrosia beetles of North America (Curculionidae: Scolytinae, Platypodinae) [Internet]. [updated May 16, 2014; last accessed December 28, 2015]. Available from: http://www.barkbeetles.info/us_canada.php
  • Bailey CD, Carr TG, Harris SA, Hughes CE. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29:435–455.
  • Beaver RA. 1989. Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF, eds. Insect-fungus interactions. London, UK: Academic Press. p. 121–143.
  • Bettini PP, Arcangela F, Kolařík M, Comparini C, Pepori AL, Santini A, Scala F, Scala A. 2014. Widespread horizontal transfer of the cerato-ulmin gene between Ophiostoma novo-ulmi and Geosmithia species. Fungal Biology 118:663–674.
  • Brasier CM. 2000. Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In: Dunn C, ed. The elms—breeding and conservation. Dordrecht, The Netherlands: Kluwer. p. 61–72.
  • Bright DE Jr. 2014. A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 3 (2000–2010), with notes on subfamily and tribal reclassifications. Insecta Mundi 356:1–336.
  • Bright DE, Stark RW. 1973. The bark and ambrosia beetles of California (Coleoptera: Scolytidae and Platypodidae). Bulletin of the California Insect Survey 16:1–167.
  • Buckler ES, IV, Ippolito A, Holtsford TP. 1997. The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145:821–832.
  • Carbone I, Kohn LM. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556.
  • Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC. Peña JE. 2014. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology 63:54–62.
  • Dallara PL, Flint ML, Seybold SJ. 2012. An analysis of the larval instars of the walnut twig beetle, Pityophthorus juglandis, in northern California black walnut, Juglans hindsii, and a new host record for Hylocurus hirtellus. Pan-Pacific Entomologist 88:338–366.
  • Degnan JH, Rosenberg NA. 2009 Gene tree discordance, phylogenetic inference, and the multispecies coalescent. Trends in Ecology & Evolution 24:332–340.
  • Dori-Bachash M, Avrahami-Moyal L, Protasov A, Mendel Z, Freeman S, 2015. The occurrence and pathogenicity of Geosmithia spp. and common blue-stain fungi associated with pine bark beetles in planted forests in Israel. European Journal of Plant Pathology 143:627–639.
  • Feliner GN, Rosselló JA. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution 44:911–919.
  • Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118.
  • Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA. 2007. The current status of species recognition and identification in Aspergillus. Studies in Mycology 59:1–10.
  • Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61:1323–1330.
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59:307–321.
  • Haack RA. 2001. Intercepted Scolytidae (Coleoptera) at U.S. ports of entry: 1985–2000. Integrated Pest Management Reviews 6:253–282.
  • Hadziabdic D, Vito LM, Wadl PA, Windham MT, Trigiano RN. 2012. Genetic diversity of Geosmithia morbida, the causal agent of thousand canker disease in the southeastern United States. Phytopathology 102:49.
  • Harrington, TC, Yun HY, Lu S-S, Goto H, Aghayeva DN, Fraedrich SW. 2011. Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036.
  • Hishinuma SM, Dallara PL, Yaghmour MA, Zerillo MM, Parker CM, Roubtsova TV, Nguyen TL, Tisserat NA, Bostock RM, Flint ML, Seybold SJ. 2016. Wingnut (Juglandaceae) as a new generic host for Pityophthorus juglandis (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, Geosmithia morbida (Ascomycota: Hypocreales). The Canadian Entomologist 148:83–91.
  • Horn A, Roux-Morabito G, Lieutier F, Kerdelhue C. 2006. Phylogeographic structure and past history of the circum-Mediterranean species Tomicus destruens Woll. (Coleoptera: Scolytinae). Molecular Ecology 15:1603–1615.
  • Horn A, Stauffer C, Lieutier F, Kerdelhue C. 2009. Complex postglacial history of the temperate bark beetle Tomicus piniperda L. (Coleoptera, Scolytinae). Heredity 103:238–247.
  • Jacobi W, Koski R, Harrington T, Witcosky J. 2007. Association of Ophiostoma novo-ulmi with Scolytus schevyrewi (Scolytidae) in Colorado. Plant Disease 91:245–247.
  • Jankowiak R, Kolařík M. 2010. Fungi associated with the fir bark beetle Cryphalus piceae in Poland. Forest Pathology 40:133–144.
  • Jankowiak R, Kolařík M, Bilańskic P. 2014. Association of Geosmithia fungi (Ascomycota: Hypocreales) with pine- and spruce-infesting bark beetles in Poland. Fungal Ecology 11:71–79.
  • Jankowiak R, Rossa R. 2008. Associations between Pityogenes bidentatus and fungi in young managed Scots pine stands in Poland. Forest Pathology 38:169–177.
  • Jordal BH, Kambestad M. 2014. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Molecular Ecology Resources 14:7–17.
  • Katoh K, Toh H. 2008. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9:212.
  • Kim S, Harrington TC, Lee JC, Seybold SJ. 2011. Leptographium tereforme, sp. nov. and other Ophiostomatales isolated from the redhaired pine bark beetle, Hylurgus ligniperda, in California. Mycologia 103:152–163.
  • Kirschner R. 2001. Diversity of filamentous fungi in bark beetle galleries in Central Europe. In: Misra JK, Horn BW, eds. Trichomycetes and other fungal groups: Professor Robert W. Lichtwardt commemoration volume. Enfield, NH: Science Publishers. p. 175–196.
  • Knížek M. 2004. Fauna Europaea: Scolytinae. In: Alonso-Zarazaga MA, ed. Fauna Europaea: Curculionidae. Fauna Europaea version 2.6.2 [Internet]. [updated August 29, 2013; last accessed December 28, 2015]. Available from: http://www.fauna-eu.org/
  • Knowles LL 2009. Estimating species trees: methods of phylogenetic analysis when there is incongruence across genes. Systematic Biology 58:463–467.
  • Kolařík M, Freeland E, Utley C, Tisserat N. 2011. Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia 103:325–332.
  • Kolařík M, Hulcr J, Kirkendall LR. 2015. New species of Geosmithia and Graphium associated with ambrosia beetles in Costa Rica. Czech Mycology 67:29–35.
  • Kolařík M, Jankowiak R. 2013. Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in Central and Northeastern Europe. Microbial Ecology 66:682–700.
  • Kolařík M, Kirkendall LR. 2010. Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biology 114:676–689.
  • Kolařík M, Kostovčík M, Pažoutová S. 2007. Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycological Research 111:1298–1310.
  • Kolařík M, Kubátová A, Čepička I, Pažoutová S, Šrůtka P. 2005. A complex of three new white-spored, sympatric, and host range limited Geosmithia species. Mycological Research 109:1323–1336.
  • Kolařík M, Kubátová A, Hulcr J, Pažoutová S. 2008. Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microbial Ecology 55:65–80.
  • Kolařík M, Kubátová A, Pažoutová S, Šrůtka P. 2004. Morphological and molecular characterisation of Geosmithia putterillii, G. pallida comb. nov. and G. flava sp. nov., associated with subcorticolous insects. Mycological Research 108:1053–1069.
  • Kostovčík M, Bateman, Kolařík M, Stelinski LL, Jordal B, Hulcr J. 2015. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from high-throughput community sequencing. ISME Journal 9:126–138.
  • Kubátová A, Kolařík M, Prášil K, Novotný D. 2004. Bark beetles and their galleries: well-known niche for little known fungi, case of Geosmithia. Czech Mycology 55:1–18.
  • Liu YJ, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16:1799–1808.
  • Lynch SC, Wang DH, Mayorquin JS, Rugman-Jones P, Stouthamer R, Eskalen A. 2014. First report of Geosmithia pallida causing foamy bark canker, a new disease on coast live oak (Quercus agrifolia) in association with Pseudopityophthorus pubipennis in California. Plant Disease 98:1276–1277.
  • Machingambi NM, Roux J, Dreyer LL, Roets F. 2014. Bark beetles (Curculionidae: Scolytinae), their phoretic mites (Acari) and associated Geosmithia species (Ascomycota: Hypocreales) from Virgilia trees in South Africa. Fungal Biology 118:472–483.
  • Malak LG, Bishay DW, Abdel-Baky AM, Moharram AM, Cutler SJ, Ross SA. 2013a. Bioactive secondary metabolites from Geosmithia langdonii. Planta Medica 79(10):PL7.
  • Malak LG, Bishay DW, Abdel-Baky AM, Moharram AM, Cutler SJ, Ross SA. 2013b. New secondary metabolites from Geosmithia lavendula. Planta Medica 79(05):P51.
  • McPherson BA, Erbilgin N, Bonello P, Wood DL. 2013. Fungal species assemblages associated with Phytophthora ramorum-infected coast live oaks following bark and ambrosia beetle colonization in northern California. Forest Ecology and Management 291:30–42.
  • Montecchio L, Faccoli M. 2014. First record of Thousand cankers disease Geosmithia morbida and walnut twig beetle, Pityophthorus juglandis on Juglans nigra in Europe. Plant Disease 98:696.
  • O’Donnell K. 1993. Fusarium and its near relatives. In: Reynolds DR, Taylor JW, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Wallingford, UK: CAB International. p. 225–233.
  • O’Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7:103–116.
  • Painter JN, Siitonen J, Hanski I. 2007. Phylogeographical patterns and genetic diversity in three species of Eurasian boreal forest beetles. Biological Journal of the Linnean Society 91:267–279.
  • Pepori AL, Kolařík M, Bettini PP, Vettraino AM, Santini A. 2015. Morphological and molecular characterisation of Geosmithia species on European elms. Fungal Biology 119:1063–1074.
  • Pfeffer A. 1994. Zentral- und westpaläarktische Borken- und Kernkäfer (Coleoptera: Scolytidae, Platypodidae). Entomologica Basiliensia 17:5–310.
  • Pitt JI. 1979. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London, UK: Academic Press. 634 p.
  • Pitt JI, Hocking AD. 2009. Fungi and food spoilage. Dordrecht, The Netherlands: Springer. 519 p.
  • Ploetz RC, Hulcr J, Wingfield MJ, de Beer W. 2013. Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Disease 97:856–872.
  • Raper KB, Fennell DL. 1948. New species of Penicillium. Mycologia 40:507–546.
  • Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98.
  • Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.
  • Rooney AP, Ward TJ. 2005. Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proceedings of the National Academy of Sciences of the United States of America 102:5084–5089.
  • Rossman AY, McKemy JM, Pardo-Schultheiss RA, Schroers HJ. 2001. Molecular studies of the Bionectriaceae using large subunit rDNA sequences. Mycologia 93:100–110.
  • Schwenke W. 1974. Die Forstschädlinge Europas, II Käfer. Berlin, Germany: Verlag Paul Parey. 471 p.
  • Seybold SJ, Haugen D, O’Brien J, Graves AD. 2013. Thousand cankers disease. USDA Forest Service, Northeastern Area State and Private Forestry Pest Alert, NA-PR-02-10, February 2013. 2 p. [last accessed December 28, 2015]. Available from: http://www.na.fs.fed.us/pubs/detail.cfm?id=5225
  • Seybold SJ, Penrose RL, Graves AD. 2016. Invasive bark and ambrosia beetles in California Mediterranean forest ecosystems. In: Paine TD, Lieutier F, eds. Insects and diseases of Mediterranean forest systems. Cham, Switzerland: Springer International Publishing. p. 583–662.
  • Simon UK, Weiss M. 2008. Intragenomic variation of fungal ribosomal genes is higher than previously thought. Molecular Biology and Evolution 25:2251–2254.
  • Six DL, Doug SW, de Beer W, Woolfolk SW. 2009. Ambrosiella beaveri, sp. nov., associated with an exotic ambrosia beetle, Xylosandrus mutilatus (Coleoptera: Curculionidae, Scolytinae), in Mississippi, USA. Antonie Van Leeuwenhoek 96:17–29.
  • Skouboe P, Frisvad JC, Taylor JW, Lauritsen D, Boysen M, Rossen L. 1999. Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycological Research 103:873–881.
  • Stodůlková E, Kolařík M, Křesinová Z, Kuzma M, Šulc M, Man P, Novák P, Maršík P, Landa P, Olšovská J, Chudíčková M, Pažoutová S, Černý J, Bella J, Flieger M. 2009. Hydroxylated anthraquinones produced by Geosmithia species. Folia Microbiologica 54:179–187.
  • Stodůlková E, Man P, Kolařík M, Flieger M. 2010. High-performance liquid chromatography–off line mass spectrometry analysis of anthraquinones produced by Geosmithia lavendula. Journal of Chromatography A 1217:6296–6302.
  • Taerum SJ, Duong TA, de Beer W, Gillette N, Sun J-H, Owen DR, Wingfield MJ. 2013. Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS ONE 8:e78126.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731–2739.
  • Tisserat N, Cranshaw W, Leatherman D, Utley C, Alexander K. 2009. Black walnut mortality in Colorado caused by the walnut twig beetle and thousand cankers disease. Plant Health Progress. doi:10.1094/PHP-2009-0811-01-RS. http://www.plantmanagementnetwork.org/pub/php/research/2009/walnut/ Last accessed December 28, 2015.
  • Utley C, Nguyen T, Roubtsova T, Coggeshall M, Ford TM, Grauke LJ, Graves AD, Leslie CA, McKenna J, Woeste K, Yaghmour MA, Cranshaw W, Seybold SJ., Bostock RM, Tisserat N. 2013. Susceptibility of walnut and hickory species to Geosmithia morbida. Plant Disease 97:601–607.
  • Webber JF, Gibbs JN. 1989. Insect dissemination of fungal pathogens of trees. In: Wilding N, Collins NM, Hammond PM, Webber JF, eds. Insect-fungus interactions. London, UK: Academic Press. p. 161–175.
  • White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. New York, NY: Academic Press. p. 315–322.
  • Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T. 2005. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11:1616–1623.
  • Wood SL. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoir 6. 1359 p.
  • Wright E. 1938. Further investigations of brown-staining fungi associated with engraver beetles (Scolytus) in white fir. Journal of Agricultural Research 57:759–773.
  • Xia X, Xie Z. 2001. DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity 92:371–373.
  • Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31:3406–3415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.