204
Views
12
CrossRef citations to date
0
Altmetric
Biochemistry/Physiology

Adding value to lignocellulosic wastes via their use for endoxylanase production by Aspergillus fungi

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 195-205 | Received 06 Oct 2018, Accepted 04 Dec 2018, Published online: 11 Mar 2019

LITERATURE CITED

  • Abdelwahed NAI, Danial EN, El-Naggar N, Mohamed AA. 2014. Optimization of alkaline protease production by Streptomyces ambofaciens in free and immobilized form. American Journal of Biochemistry and Biotechnology 10:1–13.
  • Anwar Z, Gulfraz M, Irshad M. 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of Radiation Research and Applied Sciences 7:163–173.
  • Bailey MJ, Biely P, Poutanen K. 1992. Interlaboratory testing methods for assays of xylanase activity. Journal of Biotechnology 23:257–270.
  • Barchuk ML, Díaz GV, Coll PAF, Velázquez JE, Fonseca MI, Villalba LL, Zapata PD. 2016. Selection of Trichoderma strain to enhanced cellulase-poor xylanase production using sugarcane bagasse as sole carbon source under light. International Journal of Recent Biotechnology 4:25–34.
  • Burlacu A, Cornea CP, Israel-Roming F. 2016. Microbial xylanase: a review. Scientific Bulletin Series F. Biotechnology 20:335–342.
  • Chipeta ZA, Du Preez JC, Christopher L. 2008. Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor. Journal of Industrial Microbiology and Biotechnology 35:587–594.
  • Gomaa EZ. 2013. Optimization and characterization of alkaline protease and carboxymethyl-cellulase produced by Bacillus pumillus grown on Ficus nitida wastes. Brazilian Journal of Microbiology 44:529–537.
  • Ho HL, Jamila SH. 2014. Optimisation of medium formulation and growth conditions for xylanase production by Aspergillus brasiliensis in submerged fermentation (SmF). Journal of Biodiversity, Bioprospecting and Development 1:1–13.
  • Irfan M, Nadeem M, Syed Q. 2014. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. Journal of Radiation Research and Applied Sciences 7:317–326.
  • Izarra ML, Santayana ML, Villena GK, Gutiérrez-Correa M. 2010. Influencia de la concentración de inóculo en la producción de celulasa y xilanasa por Aspergillus niger. Revista Colombiana de Biotecnología 12:139–150.
  • Juturu V, Wu JC. 2012. Microbial xylanases: engineering, production and industrial applications. Biotechnology Advances 30:1219–1227.
  • Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V. 2006. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World Journal of Microbiology and Biotechnology 22:391–397.
  • Kapoor M, Nair LM, Kuhad RC. 2008. Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochemical Engineering Journal 38:88–97.
  • Kheng PP, Omar IC. 2005. Xylanase production by a local fungal isolate, Aspergillus niger USM AI 1 via solid state fermentation using palm kernel cake (PKC) as substrate. Songklanakarin Journal of Scientific Technology 27:325–336.
  • Kumar D, Kumar SS, Kumar J, Kumar O, Mishra SV, Malyan S, Kumar R. 2017. Xylanases and their industrial applications: a review. Biochemical and Cellular Archives 17:353–360.
  • Lakshmi GS, Bhargavi PL, Prakasham RS. 2011. Sustainable bioprocess evaluation for xylanase production by isolated Aspergillus terreus and Aspergillus fumigatus under solid-state fermentation using oil palm empty fruit bunch fiber. Current Trends in Biotechnology and Pharmacy 5:1434–1444.
  • MacCabe AP, Orejas M, Tamayo EN, Villanueva A, Ramón D. 2002. Improving extracellular production of food-use enzymes from Aspergillus nidulans. Journal of Biotechnology 96:43–54.
  • Menon G, Datta S. 2017. Xylanases: from paper to fuel. In Kalia VC, Kumar P, eds. Microbial Applications Vol. 1 Bioremediation and Bioenergy. Delhi, India: Springer. p. 153–164.
  • Miller G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry 31:426–428.
  • Motta FL, Andrade CCP, Santana MHA. 2013. A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Chandel AK, da Silva SS, eds. Sustainable degradation of lignocellulosic biomass—techniques, Applications and Commercialization. Rijeca, Croacia: Intech. p. 251–275.
  • Pandey A, Soccol CR, Nigam P, Soccol VT. 2000. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology 74:69–80.
  • Rodríguez MD, Castrillo ML, Velázquez JE, Kramer GR, Sedler C, Zapata PD, Villalba L. 2017. Obtención de azúcares fermentables a partir de aserrín de pino pretratado secuencialmente con ácido-base. Revista Internacional de Contaminación Ambiental 33:317–324.
  • Sánchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances 27:185–194.
  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renewable Energy 37:19–27.
  • Simoes MLG, Tauk-Tornisielo SM. 2006. Optimization of xylanase biosynthesis by Aspergillus japonicus isolated from a Caatinga area in the Brazilian state of Bahia. African Journal of Biotechnology 5:1135–1141.
  • Sindhu R, Binod P, Pandey A. 2016. Biological pretreatment of lignocellulosic biomass—an overview. Bioresource Technology 199:76–82.
  • Singh R, Kumar, M, Mittal A, Mehta PK. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech 6: 174.
  • Subramaniyan S, Sandhia GS, Prema P. 2001. Control of xylanase production without protease activity in Bacillus sp. by selection of nitrogen source. Biotechnology Letters 23:369–371.
  • Uasuf A, Hilbert J. 2012. El uso de la biomasa de origen forestal con destino a bioenergía en la Argentina. Buenos Aires, Argentina: Ediciones INTA, Instituto Nacional de Tecnología Agropecuaria (INTA). 50 p.
  • Van Dyk JS, Pletschke BI. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances 30:1458–1480.
  • Wei H, Xu Q, Taylor II LE, Baker JO, Tucker MP, Ding SY. 2009. Natural paradigms of plant cell wall degradation. Current Opinion in Biotechnology 20:330–338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.