369
Views
17
CrossRef citations to date
0
Altmetric
Ecology

Potential roles of marine fungi in the decomposition process of standing stems and leaves of Spartina maritima

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 371-383 | Received 20 Nov 2017, Accepted 14 Jan 2019, Published online: 16 May 2019

LITERATURE CITED

  • Anderson CE. 1974. A review of structure in several North Carolina salt marsh plants. In: Reimold RJ, Queen WH, eds. Ecology of halophytes. New York: Academic Press. p. 307–344.
  • Azevedo E, Rebelo R, Caeiro MF, Barata M. 2012. Use of drift substrates to characterize marine fungal communities from the west coast of Portugal. Mycologia 104:623–632.
  • Barata M. 1997. Fungos marinhos superiores associados a Spartina maritima em Estuários da Costa Portuguesa [PhD dissertation]. Lisbon, Portugal: Faculty of Sciences, University of Lisbon. 251 p.
  • Barata M. 2002. Fungi on the halophyte Spartina maritima in salt marshes. In: Hyde KD, ed. Fungi in marine environments. Hong Kong: Fungal Diversity Press. p. 179–193.
  • Barata M. 2006. Marine fungi from Mira river salt marsh in Portugal. Revista Iberoamericana de Micología 23:179–184.
  • Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H. 2013. ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources 13:218–224.
  • Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA. 2003. Dynamics of bacterial and fungal communities on decaying salt marsh grass. Applied and Environmental Microbiology 69:6676–6687.
  • Buchan A, Newell SY, Moreta JIL, Moran MA. 2002. Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microbial Ecology 43:329–40.
  • Buchanan-Wollaston V. 1997. The molecular biology of leaf senescence. Journal of Experimental Botany 48:181–199.
  • Calado ML, Barata M. 2012. Salt marsh fungi. In: Jones EBG, Pang K-L, eds. Marine Fungi and Fungal-like Organisms. Berlin, Germany: De Gruyter. p. 345–381.
  • Calado ML, Carvalho L, Pang K-L, Barata M. 2015. Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microbial Ecology 70:612–633.
  • Cartaxana P, Catarino F. 1997. Allocation of nitrogen and carbon in an estuarine salt marsh in Portugal. Journal of Coastal Conservation 3:27–34.
  • Cartaxana P, Catarino F. 2002. Nitrogen resorption from senescing leaves of three salt marsh plant species. Plant Ecology 159:95–102.
  • Castillo JM, Rubio-Casal AE, Figueroa E. 2010. Cordgrass biomass in coastal marshes. In: Momba MNB, Bux F, eds. Biomass. Rijeka, Croatia: Sciyo (InTech). p. 1–26.
  • Castro P, Freitas H. 2000. Fungal biomass and decomposition in Spartina maritima leaves in the Mondego salt marsh (Portugal). Hydrobiologia 428:171–177.
  • Cornick J, Standwerth A, Fisher PJ. 2005. A preliminary study of fungal endophyte diversity in a stable and declining bed of Spartina anglica Hubbard. Mycologist 19:24–29.
  • Curado G, Rubio-Casal AE, Figueroa E, Grewell BJ, Castillo JM. 2013. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes. Environmental Monitoring and Assessment 185:8439–8449.
  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A. 2011. Marine subsurface eukaryotes: the fungal majority. Environmental Microbiology 13:172–183.
  • Gessner RV. 1977. Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from Rhode Island estuary. Mycologia 69:477–491.
  • Gessner RV, Kohlmeyer J. 1976. Geographical distribution and taxonomy of fungi from salt marsh Spartina. Canadian Journal of Botany 54:2023–2037.
  • Gotelli NJ, Colwell RK. 2010. Estimating species richness. In: Magurran AE, McGill BJ, eds. Biological diversity: frontiers in measurement and assessment. Oxford, UK: Oxford University Press. p. 39–54.
  • Graça MA, Newell SY, Kneib RT. 2000. Grazing rates of organic matter and living fungal biomass of decaying Spartina alterniflora by three species of salt-marsh invertebrates. Marine Biology 136:281–289.
  • Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 4A. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  • Healy B, Walters K. 1994. Oligochaeta in Spartina stems: the microdistribution of Enchytraeidae and Tubificidae in a salt marsh, Sapelo Island, USA. Hydrobiologia 278:111–123.
  • Hodson RE, Christian RR, Maccubbin AE. 1984. Lignocellulose and lignin in the salt marsh grass Spartina alterniflora: initial concentrations and short-term, post-depositional changes in detrital matter. Marine Biology 81:1–7.
  • Hyde KD, Sarma VV. 2000. Pictorial key to higher marine fungi. In: Hyde KD, Pointing SB, eds. Marine mycology—a practical approach. Hong Kong: Fungal Diversity Press. p. 205–270.
  • Jones EBG, Fell JW. 2012. Basidiomycota. In: Jones EBG, Pang K-L, eds. Marine Fungi and Fungal-like Organisms. Berlin, Germany: De Gruyter. p. 49–63.
  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL. 2009. Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35:1–187.
  • Kandalepas D, Blum MJ, Van Bael SA. 2015. Shifts in symbiotic endophyte communities of a foundational salt marsh grass following oil exposure from the deepwater horizon oil spill. PLoS ONE 10: e0122378.
  • Kneib RT, Newell SY, Hermeno ET. 1997. Survival, growth and reproduction of the salt-marsh amphipod Uhlorchestia spartinophila reared on natural diets of senescent and dead Spartina alterniflora leaves. Marine Biology 128:423–431.
  • Kohlmeyer J, Gessner RV. 1976. Buergenerula spartinae sp. nov., an Ascomycete from salt marsh cordgrass, Spartina alterniflora. Canadian Journal of Botany 54:1759–1766.
  • Kohlmeyer J, Kohlmeyer E. 1979. Marine mycology—the higher fungi. New York: Academic Press. 704 p.
  • Kohlmeyer J, Volkmann-Kohlmeyer B. 1991. Illustrated key to the filamentous higher marine fungi. Botanica Marina 34:1–61.
  • Lyons JI, Alber M, Hollibaugh JT. 2010. Ascomycete fungal communities associated with early decaying leaves of Spartina spp. from central California estuaries. Oecologia 162:435–442.
  • Lyons JI, Newell SY, Buchan A, Moran MA. 2003. Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microbial Ecology 45:270–281.
  • Menéndez M, Sanmartí N. 2007. Geratology and decomposition of Spartina versicolor in a brackish Mediterranean marsh. Estuarine, Coastal and Shelf Science 74:320–330.
  • Nagahama T. 2006. Yeast biodiversity in freshwater, marine and deep-sea environments. In: Rosa CA, Peter G, eds. Biodiversity and ecophysiology of yeasts. Berlin, Germany: Springer. p. 241–262.
  • Newell SY. 1993. Decomposition of shoots of a salt-marsh—methodology and dynamics of microbial assemblages. In: Jones JG, ed. Advances in microbial ecology. Vol. 13. New York: Plenum Press. p. 301–326.
  • Newell SY. 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. Journal of Experimental Marine Biology and Ecology 200:187–206.
  • Newell SY. 2001. Spore-expulsion rates and extents of blade occupation by ascomycetes of the smooth-cordgrass standing-decay system. Botanica Marina 44:277–285.
  • Newell SY, Arsuffi TL, Palm LA. 1996a. Misting and nitrogen fertilization of shoots of a saltmarsh grass: effects upon fungal decay of leaf blades. Oecologia 108:495–502.
  • Newell SY, Blum LK, Crawford RE, Dai T, Dionne M. 2000. Autumnal biomass and potential productivity of salt marsh fungi from 29° to 43° north latitude along the United States Atlantic Coast. Applied and Environmental Microbiology 66:180–185.
  • Newell SY, Fallon RD, Miller JD. 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Marine Biology 101:471–481.
  • Newell SY, Porter D. 2000. Microbial secondary production from saltmarsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA, eds. Concepts and controversies in tidal marsh ecology. Dordrecht, The Netherlands: Kluwer Academic Publishers. p. 159–185.
  • Newell SY, Porter D, Lingle WL. 1996b. Lignocellulolysis by ascomycetes (fungi) of a saltmarsh grass (smooth cordgrass). Microscopy Research and Technique 33:32–46.
  • Newell SY, Wasowski J. 1995. Sexual productivity and spring intramarsh distribution of a key salt-marsh microbial secondary producer. Estuaries 18:241–249.
  • Newell SY, Zakel KL. 2000. Measuring summer patterns of ascospore release by saltmarsh fungi. Mycoscience 41:211–215.
  • Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J et al. 2012. Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4:37–63.
  • Onyile AB, Gessner RV. 1982. Hyphopodia of Buergenerula spartinae (Ascomycetes): effect of environmental factors and carbon to nitrogen ratio. Mycologia 74:103–109.
  • Pang K-L, Jones EBG, Vrijmoed LLP. 2008. Autecology of Antennospora (Fungi: Ascomycota: Sordariomycetidae: Halosphaeriales) and its phylogeny. Raffles Bulletin of Zoology 19:1–10.
  • Pang K-L, Mitchell JI. 2005. Molecular approaches for assessing fungal diversity in marine substrata. Botanica Marina 48:332–347.
  • Peña NI, Arambarri AM. 1996. Hongos marinos lignícolas de Mar del Plata (provincia de Buenos Aires, Argentina) II. Darwiniana 34:293–298.
  • Peña NI, Arambarri AM. 1998. Hongos marinos lignícolas de la laguna costera de Mar Chiquita (provincia de Buenos Aires, Argentina) I. Ascomycotina y Deuteromycotina sobre Spartina densiflora. Darwiniana 35:61–67.
  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R. 2007. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecology 53:579–590.
  • Raghukumar S. 2004. The role of fungi in marine detrital processes. In: Ramaiah N, ed. Marine microbiology: facets and opportunities. Goa, India: National Institute of Oceanography. p. 91–101.
  • Sakayaroj J, Preedanon S, Phongpaichit S, Buatong J, Chaowalit P, Rukachaisirikul V. 2012. Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In: Jones EBG, Pang K-L, eds. Marine Fungi and Fungal-like Organisms. Berlin, Germany: De Gruyter. p. 291–328.
  • Samiaji J, Barlocher F. 1996. Geratology and decomposition of Spartina alterniflora Loisel in a New Brunswick saltmarsh. Journal of Experimental Marine Biology and Ecology 201:233–252.
  • Sánchez JM, SanLeon DG, Izco J. 2001. Primary colonisation of mudflat estuaries by Spartina maritima (Curtis) Fernald in Northwest Spain: vegetation structure and sediment accretion. Aquatic Botany 69:15–25.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725–2729.
  • Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7: e40863.
  • Torzilli AP, Andrykovitch G. 1986. Degradation of Spartina lignocellulose by individual and mixed cultures of salt-marsh fungi. Canadian Journal of Botany 64:2211–2215.
  • Walker AK, Campbell J. 2010. Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico. Mycologia 102:513–521.
  • White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. London: Academic Press. p. 315–322.
  • Wilson JO, Buchsbaum R, Valiela I, Swain T. 1986a. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Marine Ecology Progress Series 29:177–187.
  • Wilson JO, Valiela I, Swain T. 1986b. Carbohydrate dynamics during decay of litter of Spartina alterniflora. Marine Biology 92:277–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.