878
Views
17
CrossRef citations to date
0
Altmetric
Systematics

Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini

ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 1104-1137 | Received 04 Oct 2019, Accepted 09 Apr 2020, Published online: 18 Jun 2020

LITERATURE CITED

  • Aas T, Solheim H, Jankowiak R, Bilański P, Hausner G. 2018. Four new Ophiostoma species associated with hardwood-infesting bark beetles in Norway and Poland. Fungal Biology 122:1142–1158.
  • Abrahamson LP. 1967. Mycangia and symbiotic microbes of Xyloterinus politus (Say) and Trypodendron betulae Swaine (Coleoptera: Scolytidae) [MS thesis]. Madison, Wisconsin: University of Wisconsin, Madison. 119 p.
  • Abrahamson LP. 1969. Physiological interrelationships between ambrosia beetles and their symbiotic fungi [PhD dissertation]. Madison, Wisconsin: University of Wisconsin, Madison. 122 p.
  • Abrahamson LP, Chu H-M, Norris DM. 1967. Symbiontic interrelationships between microbes and ambrosia beetles. II. The organs of microbial transport and perpetuation in Trypodendron betulae and T. retusum (Coleoptera: Scolytidae). Annals of the Entomological Society of America 60:1107–1110.
  • Abrahamson LP, Norris DM. 1966. Symbiontic interrelationships between microbes and ambrosia beetles. I. The organs of microbial transport and perpetuation of Xyloterinus politus. Annals of the Entomological Society of America 59:877–880.
  • Abrahamson LP, Norris DM. 1969. Symbiontic interrelationships between microbes and ambrosia beetles IV. Ambrosial fungi associated with Xyloterinus politus. Journal of Invertebrate Pathology 14:381–385.
  • Alamouti SM, Tsui CK, Breuil C. 2009. Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycological Research 113:822–835.
  • Babuder G, Pohleven F. 1993. Symbiotic fungi of the striped bark beetle Xyloterus lineatus (Trypodendron lineatum) Ol. (Coleoptera, Scolytidae). Zbornik gozdarstva in Lesarstva 41:99–110.
  • Baker JM, Kreger-van Rij NJ, 1964. Endomycopsis platypodis sp.n. (Ascomycetes): an auxiliary ambrosia fungus of Platypus cylindrus Fab. (Col. Platypodidae). Antonie van Leeuwenhoek 30:433–441.
  • Bakshi BK. 1950. Fungi associated with ambrosia beetles in Great Britain. Transactions of the British Mycological Society 33:111–120.
  • Bakshi BK. 1952. Oedocephalum lineatum is a conidial stage of Fomes annosus. Transactions of the British Mycological Society 35:195.
  • Bateman C, Huang YT, Simmons DR, Kasson MT, Stanley EL, Hulcr J. 2017. Ambrosia beetle Premnobius cavipennis (Scolytinae: Ipini) carries highly divergent ascomycotan ambrosia fungus, Afroraffaelea ambrosiae gen. nov. et sp. nov. (Ophiostomatales). Fungal Ecology 25:41–49.
  • Bateman C, Kendra PE, Rabaglia R, Hulcr J. 2015. Fungal symbionts in three exotic ambrosia beetles, Xylosandrus amputatus, Xyleborinus andrewesi, and Dryoxylon onoharaense (Coleoptera: Curculionidae: Scolytinae: Xyleborini) in Florida. Symbiosis 66:141–148.
  • Bateman C, Šigut M, Skelton J, Smith KE, Hulcr J. 2016. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environmental Entomology 45:883–890.
  • Batra LR. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science 66:213–236.
  • Batra LR. 1967. Ambrosia fungi—a taxonomic revision, and nutritional studies of some species. Mycologia 59:976–1017.
  • Batra LR. 1985. Ambrosia beetles and their associated fungi: research trends and techniques. Proceedings of the Indian Academy of Science (Plant Sciences) 94:137–148.
  • Beaver RA. 2000. The ambrosia beetle genus Indocryphalus Eggers (Coleoptera: Scolytidae): a new species from Peninsular Malaysia, new synonymy and a key to species. Serangga 5:165–179.
  • Beaver RA, Gebhardt H. 2006. A review of the Oriental species of Scolytoplatypus Schaufuss (Coleoptera, Curculionidae, Scolytinae). Deutsche Entomologische Zeitschrift 53:155–178.
  • Biedermann PH, Klepzig KD, Taborsky M, Six DL. 2013. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiology Ecology 83:711–723.
  • Biedermann PH, Vega FE. 2020. Ecology and evolution of insect–fungus mutualisms. Annual Review of Entomology 65:431–455
  • Blackwell M, Jones K. 1997. Taxonomic diversity and interactions of insect-associated ascomycetes. Biodiversity and Conservation 6:689–699.
  • Borden JH. 1988. The striped ambrosia beetle. In: Berryman AA, ed. Dynamics of forest insect populations. New York: Plenum Press. p. 579–596.
  • Brewer SD, Beck RA, Roeper RA. 1988. Observations of the gallery habits of Trypodendron retusum (Coleoptera: Scolytidae) infesting aspen in Central Michigan. The Great Lakes Entomologist 21:5–8.
  • Bussler HE, Schmidt OL. 2008. Trypodendron laeve Eggers, 1939—ein wenig bekannter Nutzholzborkenkäfer. Forstschutz Aktuell, Wien 45:11–13.
  • Carlier FX, Decock C, Jacobs K, Maraite H. 2006. Ophiostoma arduennense sp. nov. (Ophiostomatales, Ascomycota) from Fagus sylvatica in southern Belgium. Mycological Research 110:801–810.
  • Cassar S, Blackwell M. 1996. Convergent origins of ambrosia fungi. Mycologia 88:596–601.
  • Cassar SC. 1993. Molecular studies on evolutionary patterns and phylogenetics of ambrosia fungi [MS thesis]. Baton Rouge, Louisiana: Louisiana State University. 53 p.
  • Cognato AI, Smith SM, Pham TH. 2015. Cladistic analysis of Indocryphalus Eggers (Coleoptera: Curculionidae: Scolytinae: Xyloterini) and description of a new species from Vietnam. Insect Systematics and Evolution, doi:10.1163/1876312X-46052129
  • De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ. 2014. Redefining Ceratocystis and allied genera. Studies in Mycology 79:187–219.
  • De Beer ZW, Duong TA, Wingfield MJ. 2016a. The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Studies in Mycology 83:165–191.
  • De Beer ZW, Marincowitz S, Duong TA, Kim JJ, Rodrigues A, Wingfield MJ. 2016b. Hawksworthiomyces gen. nov. (Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biology 120:1323–1340.
  • De Beer ZW, Marincowitz S, Duong TA, Wingfield MJ. 2017. Bretziella, a new genus to accommodate the oak wilt fungus, Ceratocystis fagacearum (Microascales, Ascomycota). MycoKeys 27:1–19.
  • Delgado G, Miller AN. 2017. South Florida microfungi: a new species of Taeniolella (anamorphic Sordariomycetes) isolated from cabbage palm. Nova Hedwigia 105:1–4.
  • Dreaden TJ, Davis JM, De Beer ZW, Ploetz RC, Soltis PS, Wingfield MJ, Smith JA. 2014. Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biology 118:970–978.
  • Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797.
  • Ertz D, Heuchert B, Braun U, Freebury CE, Common RS, Diederich P. 2016. Contribution to the phylogeny and taxonomy of the genus Taeniolella, with a focus on lichenicolous taxa. Fungal Biology 120:1416–1447.
  • Farris SH, Chapman JA. 1957. A preliminary study of the deposition and early growth of fungus within the galleries of the ambrosia beetle Trypodendron lineatum (Oliv.). Canadian Department of Agriculture Forest Biology Division, Bi-monthly Program Report 13:3.
  • Francke-Grosmann H. 1952. Über die Ambrosiazucht der beiden Kiefernborkenkäfer Myelophilus minor Htg. und Ips acuminatus Gyll. Meddelanden från Statens Skogsforskningsinstitut 41:1–52.
  • Francke-Grosmann H. 1956. Hautdrüsen als träger der pilzsymbiose bei ambrosiakäfern. Zeitschrift für Morphologie und Ökologie der Tiere 45:275–308.
  • Francke-Grosmann H. 1958. Über die Ambrosiazucht holzbrütender Ipiden im Hinblick auf das System. Verhandlungen Der Deutschen Gesellschaft Für Angewandte Entomologie 14:139–144.
  • Francke-Grosmann H. 1963. Some new aspects in forest entomology. Annual Review of Entomology 8:415–438.
  • Francke-Grosmann H. 1967. Ectosymbiosis in wood-inhabiting insects. In: Henry SM, ed. Symbiosis. New York: Academic Press. p. 142–206.
  • Francke-Grosmann H. 1975. Zur epizoischen und endozoischen Ubertragung der symbiotischen Pilze des Ambrosiakafers Xyleborus saxeseni (Coleoptera: Scolytidae). Entomologica Germanica 1:279–292.
  • French JR, Roeper RA. 1972. Observations on Trypodendron rufitarsis (Coleoptera: Scolytidae) and its primary symbiotic fungus, Ambrosiella ferruginea. Annals of the Entomological Society of America 65:282.
  • Funk A. 1965. The symbiotic fungi of certain ambrosia beetles in British Columbia. Canadian Journal of Botany 43:929–932.
  • Gallegly ME, Barnett HL. 1989. Julian Gilbert Leach: pioneer leader in plant pathology. Annual Review of Phytopathology 27:35–41.
  • Gharabigloozare Y. 2015. Raffaelea spp. from five ambrosia beetles in the genera Xyleborinus and Cyclorhipidion (Coleoptera: Curcurlionidae: Scolytinae: Xyleborini) [MS thesis]. Ames, Iowa: Iowa State University. 48 p.
  • Gohli J, Kirkendall LR, Smith SM, Cognato AI, Hulcr J, Jordal BH. 2017. Biological factors contributing to bark and ambrosia beetle species diversification. Evolution 5:1258–1272.
  • Goto H. 1998. A new type of mycangia found in the genus Euwallacea (Coleoptera, Scolytidae). In: Brunhofer V, Soldán T, eds. Book of Abstracts 1, Proceedings of the 6th European Congress of Entomology, 23–29 August 1998, Ceske Budejovice, Czech Republic. p. 340.
  • Grüne S. 1979. Handbuch zur Bestimmung der europäischen Borkenkäfer. Hannover, Germany: M. & H. Schaper. 182 p.
  • Haanstad JO, Norris DM. 1985. Microbial symbiotes of the ambrosia beetle Xyloterinus politus. Microbial Ecology 11:267–276.
  • Hadorn C. 1933. Recherches sur la morphologie, les stades évolutifs et L’hivernage du Bostryche liseré (Xyloterus lineatus Oliv.). Supplément aux Organes de la Société Forestière Suisse, Bern 11:1–120.
  • Harrington TC. 1981. Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129.
  • Harrington TC. 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M, eds. Ecological and evolutionary advances in insect-fungal associations. New York: Oxford University Press. p. 257–291.
  • Harrington TC, Aghayeva DN, Fraedrich SW. 2010. New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–361.
  • Harrington TC, Fraedrich S, Aghayeva DN. 2008. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauracea. Mycotaxon 104:399–404.
  • Harrington TC, Fraedrich SW. 2010. Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus. Phytopathology 100:1118–1123.
  • Harrington TC, McNew D, Mayers C, Fraedrich SW, Reed SE. 2014. Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus. Mycologia 106:835–845.
  • Harrington TC, Yun HY, Lu SS, Goto H, Aghayeva DN, Fraedrich SW. 2011. Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036.
  • Hartig T. 1872a. Der Fichtensplinktkafer Bostrychus (Xyloterus) lineatus. Allgemeine Forst- und Jagdzeitung 48:181–183.
  • Hartig T. 1872b. Der Fichtensplinktkäfer Bostrychus (Xyloterus) domesticus. Allgemeine Forst- und Jagdzeitung 48:183–184.
  • Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101:14812–14817.
  • Heuchert B, Braun U, Diederich P, Ertz D. 2018. Taxonomic monograph of the genus Taeniolella s. lat. (Ascomycota). Fungal Systematics and Evolution 2:69–261.
  • Hinds TE, Davidson RW. 1972. Ceratocystis species associated with the aspen ambrosia beetle. Mycologia 64:405–409.
  • Hongsanan S, Maharachchikumbura SS, Hyde KD, Samarakoon MC, Jeewon R, Zhao Q, Al-Sadi AM, Bahkali AH. 2017. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Diversity 84:25–41.
  • Hopkins AD. 1900. American fossil coleoptera referred to the scolytidae. Psyche 9:64–67.
  • Hubbard HG. 1897. The ambrosia beetles of the United States. Bulletin of the U.S. Department of Agriculture Division of Entomology New Series 7:9–30.
  • Hulcr J, Atkinson T, Cognato AI, Jordal BH, McKenna DD. 2015. Morphology, taxonomy and phylogenetics of bark beetles. In: Vega F, Hofstetter R, eds. Bark beetles: biology and ecology of native and invasive species. London, UK: Academic Press. p. 41–84.
  • Hulcr J, Stelinski LL. 2017. The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology 62:285–303.
  • Hyde KD, Maharachchikumbura SS, Hongsanan S, Samarakoon MC, Lücking R, Pem D, Harishchandra D, Jeewon R, Zhao RL, Xu JC, Liu JK. 2017. The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Diversity 84:1–23.
  • Jankowiak R, Strzałka B, Bilański P, Linnakoski R, Aas T, Solheim H, Groszek M, De Beer ZW. 2017. Two new Leptographium spp. reveal an emerging complex of hardwood-infecting species in the Ophiostomatales. Antonie van Leeuwenhoek 110:1537–1553.
  • Johnson AJ, Hulcr J, Knížek M, Atkinson TH, Mandelshtam MY, Smith SM, Cognato AI, Park S, Li Y, Jordal BH. 2020. Revision of the bark beetle genera within the former Cryphalini (Curculionidae: Scolytinae). Insect Systematics and Diversity 4:1–81.
  • Johnson AJ, McKenna DD, Jordal BH, Cognato AI, Smith SM, Lemmon AR, Lemmon EL, Hulcr J. 2018. Phylogenomics clarifies repeated evolutionary origins of inbreeding and fungus farming in bark beetles (Curculionidae, Scolytinae). Molecular Phylogenetics and Evolution 127:229–238.
  • Jordal BH, Kambestad M. 2014. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Molecular Ecology Resources 14:7–17.
  • Jordal BH, Sequeira AS, Cognato AI. 2011. The age and phylogeny of wood boring weevils and the origin of subsociality. Molecular Phylogenetics and Evolution 59:708–724.
  • Kasson MT, O’Donnell K, Rooney AP, Sink S, Ploetz RC, Ploetz JN, Konkol JL, Carrillo D, Freeman S, Mendel Z, Smith JA. 2013. An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genetics and Biology 56:147–157.
  • Kasson MT, Wickert KL, Stauder CM, Macias AM, Berger MC, Simmons DR, Short DP, DeVallance DB, Hulcr J. 2016. Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles. Fungal Ecology 23:86–96.
  • Kirkendall LR, Biedermann PH, Jordal BH. 2015. Evolution and diversity of bark and ambrosia beetles. In: Vega F, Hofstetter R, eds. Bark beetles: biology and ecology of native and invasive species. London, UK: Academic Press. p. 85–156.
  • Kolařík M, Hulcr J, Tisserat N, De Beer W, Kostovčík M, Kolaříková Z, Seybold SJ, Rizzo DM. 2017. Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia 109:185–199.
  • Kolařík M, Kirkendall LR. 2010. Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biology 114:676–689.
  • Kühnholz S. 2004. Chemical ecology and reproductive isolation in ambrosia beetles [PhD dissertation]. Burnaby, British Columbia, Canada: Simon Fraser University. 193 p.
  • Kurtzman CP, Robnett CJ. 1998. Three new insect-associated species of the yeast genus Candida. Canadian Journal of Microbiology 44:965–973.
  • Leach JG, Hodson AC, Chilton SJ, Christensen CM. 1940. Observations on two ambrosia beetles and their associated fungi. Phytopathology 30:227–236.
  • Lehenberger M, Benz JP, Müller J, Biedermann PHW. 2018. Trypodendron domesticum (Linné) und Trypodendron lineatum (Olivier) (Curculionidae; Scolytinae) als potentielle Vektoren von xylobionten und sapro-xylobionten Pilzen. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 21:279–282.
  • Lehenberger M, Biedermann PHW, Benz JP. 2019a. Molecular identification and enzymatic profiling of Trypodendron (Curculionidae: Xyloterini) ambrosia beetle-associated fungi of the genus Phialophoropsis (Microascales: Ceratocystidaceae). Fungal Ecology 38:89–97.
  • Lehenberger M, Thalhammer M, Benz JP, Biedermann PHW. 2019b. Take good care of my fungi: fungus-spore carrying organs in Trypodendron ambrosia beetles. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 22:1–4.
  • Li Y, Huang YT, Kasson MT, Macias AM, Skelton J, Carlson PS, Yin M, Hulcr J. 2018. Specific and promiscuous ophiostomatalean fungi associated with Platypodinae ambrosia beetles in the southeastern United States. Fungal Ecology 35:42–50.
  • Lin YT, Shih HH, Hulcr J, Lin CS, Lu SS, Chen CY. 2017. Ambrosiella in Taiwan including one new species. Mycoscience 58:242–252.
  • Lindgren BS. 1986. Trypodendron lineatum (Coleoptera: Scolytidae) breeding in big leaf maple, Acer macrophyllum. Journal of the Entomological Society of British Columbia 83:44.
  • Linnakoski R, De Beer ZW, Ahtiainen J, Sidorov E, Niemelä P, Pappinen A, Wingfield MJ. 2010. Ophiostoma spp. associated with pine-and spruce-infesting bark beetles in Finland and Russia. Persoonia 25:72–93.
  • Linnakoski R, De Beer ZW, Rousi M, Niemelä P, Pappinen A, Wingfield MJ. 2008. Fungi, including Ophiostoma karelicum sp. nov., associated with Scolytus ratzeburgi infesting birch in Finland and Russia. Mycological Research 112: 1475–1488.
  • LuoZL, Hyde KD, Liu JK, Bhat DJ, Bao DF, Li WL, Su HY. 2018. Lignicolous freshwater fungi from China II: novel Distoseptispora (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycosphere 9:444–461.
  • Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, Hulcr J. 2016. Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329.
  • MacLean DB, Giese RL. 1967. The life history of the ambrosia beetle Xyloterinus politus (Coleoptera: Scolytidae). The Canadian Entomologist 99:285–299.
  • MacLean DB, Giese RL. 1968. Fungi associated with Xyloterinus politus (Say)(Coleoptera: Scolytidae). Journal of Invertebrate Pathology 10:185–189.
  • Maharachchikumbura SS, Hyde KD, Jones EG, McKenzie EH, Huang SK, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID, Hongsanan S. 2015. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72:199–301.
  • Mathiesen-Käärik A. 1953. Eine Übersicht über die gewöhnlichsten mit Borkenkäfern assoziierten Bläuepilze in Schweden und einige für Schweden neue Bläuepilze. Meddelanden från Statens Skogsforskningsinstitut 43:1–74.
  • Mayers CG, Bateman CC, Harrington TC. 2018. New Meredithiella species from mycangia of Corthylus ambrosia beetles suggest genus-level coadaptation but not species-level coevolution. Mycologia 110:63–78.
  • Mayers CG, Harrington TC, Masuya H, Jordal BH, McNew DL, Shih H-H, Roets F, Kietzka GJ. 2020. Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species. Persoonia 44:41–66.
  • Mayers CG, Harrington TC, Ranger CM. 2017. First report of a sexual state in an ambrosia fungus: Ambrosiella cleistominuta sp. nov. associated with the ambrosia beetle Anisandrus maiche. Botany 95:503–512.
  • Mayers CG, McNew DL, Harrington TC, Roeper RA, Fraedrich SW, Biedermann PHW, Castrillo LA, Reed SE. 2015. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology 119:1075–1092.
  • McKenzie EHC. 1995. Dematiaceous hyphomycetes on Pandanaceae. 5. Sporidesmium sensu lato. Mycotaxon 56:9–29.
  • Miller KE, Inward DJ, Gomez-Rodriguez C, Baselga A, Vogler AP. 2019. Predicting the unpredictable: how host specific is the mycobiota of bark and ambrosia beetles? Fungal Ecology 42:100854.
  • Musvuugwa T, De Beer ZW, Duong TA, Dreyer LL, Oberlander KC, Roets F. 2015. New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea. Antonie van Leeuwenhoek 108:933–950.
  • Nakashima T. 1975. Several types of the mycetangia found in Platypodid ambrosia beetles (Coleoptera: Platypodidae). Insecta Matsumurana (New Series) 7:1–69.
  • Nakashima T, Otomo T, Owada Y, Iizuka T. 1992. SEM observations on growing conditions of the fungi in the galleries of several ambrosia beetles: (Coleoptera: Scolytidea and Platypodidae). Journal of the Faculty of Agriculture, Hokkaido University 65:239–273.
  • Neger FW. 1910. Ambrosiapilze III. Weitere beobachtungen an Ambrosiagallen. Berichte der Deutschen Botanischen Gesellschaft 28:455–480.
  • Neger FW. 1911. Zur Übertragung des Ambrosiapilzes von Xyleborus dispar. Naturwissenschaftliche Zeitschrift für Forst- und Landwirtschaft 9:223–225.
  • Nel WJ, Duong TA, Wingfield BD, Wingfield MJ, De Beer ZW. 2018. A new genus and species for the globally important, multihost root pathogen Thielaviopsis basicola. Plant Pathology 67:871–882.
  • Nunberg M. 1951. Contribution to the knowledge of prothoracic glands of Scolytidae and Platypodidae (Coleoptera). Annales Musei Zoologici Polonici 14:261–267.
  • Oranen H. 2013. The striped ambrosia beetle, Trypodendron lineatum (Olivier), and its fungal associates [MS thesis]. Helsinki, Finland: University of Helsinki. 85 p.
  • Paulin-Mahady AE, Harrington TC, McNew D. 2002. Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 94:62–72.
  • Persoon CH. 1822. Mycologia europaea, Sectio prima. Erlangen, Germany.
  • Pistone D, Gohli J, Jordal BH. 2018. Molecular phylogeny of bark and ambrosia beetles (Curculionidae: Scolytinae) based on 18 molecular markers. Systematic Entomology 43:387–406.
  • Rayner RW. 1970. A mycological colour chart. Kew, UK: Commonwealth Mycological Institute. 34 p.
  • Réblová M, Fournier J, Štěpánek V. 2016. Two new lineages of aquatic ascomycetes: Atractospora gen. nov. and Rubellisphaeria gen. et sp. nov., and a sexual morph of Myrmecridium montsegurinum sp. nov. Mycological Progress 15:1–8.
  • Réblová M, Jaklitsch WM, Reblova K, Štěpánek V. 2015. Phylogenetic reconstruction of the Calosphaeriales and Togniniales using five genes and predicted RNA secondary structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. PLoS ONE 10:e0144616.
  • Réblová M, Miller AN, Réblová K, Štěpánek V. 2018. Phylogenetic classification and generic delineation of Calyptosphaeria gen. nov., Lentomitella, Spadicoides and Torrentispora (Sordariomycetes). Studies in Mycology 89:1–62.
  • Robideau GP, Foottit RG, Humble LM, Noseworthy MK, Wu T, Bilodeau GJ. 2016. Real‐time PCR identification of the ambrosia beetles, Trypodendron domesticum (L.) and Trypodendron lineatum (Olivier)(Coleoptera: Scolytidae). Journal of Applied Entomology 140:299–307.
  • Roeper RA. 1973. Biology of symbiotic fungi associated with ambrosia beetles of western United States [PhD dissertation]. Corvallis, Oregon: Oregon State University. 145 p.
  • Roeper RA, French JR. 1981. Ambrosia fungi of the western United States and Canada—beetle associations (Coleoptera: Scolytidae), tree hosts, and distributions. Northwest Science 55:305–309.
  • Roeper RA, Hazen CR, Helsel DK, Bunce MA. 1980. Studies on Michigan ambrosia fungi. The Michigan Botanist 19:69–73.
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539–542.
  • Saucedo-Carabez JR, Ploetz RC, Konkol JL, Carrillo D, Gazis R. 2018. Partnerships between ambrosia beetles and fungi: lineage-specific promiscuity among vectors of the laurel wilt pathogen, Raffaelea lauricola. Microbial Ecology 76:925–940.
  • Schneider I. 1975. Untersuchungen uber die biologische bedeutung der mycetangien bei einigen ambrosiakafern. Material und Organismen 3:489–497.
  • Schneider I, Rudinsky JA. 1969. Anatomical and histological changes in internal organs of adult Trypodendron lineatum, Gnalhotrichus retusus, and G. sulcatus (Coleoptera: Scolytidae). Annals of the entomological Society of America 62:995–1003.
  • Schwarz EA, Howard LO, Cook OF. 1901. Henry Guernsey Hubbard. Proceedings of the Entomological Society of Washington 4:350–360.
  • Seifert K, Morgan-Jones G, Gams W, Kendrick B. 2011. The genera of Hyphomycetes. Utrecht, the Netherlands: CBS-KNAW Fungal Biodiversity Centre. 997 p.
  • Senanayake IC, Al-Sadi AM, Bhat JD, Camporesi E, Dissanayake AJ, Lumyong S, Maharachchikumbura SS, Hyde KD. 2016. Phomatosporales ord. nov. and Phomatosporaceae fam. nov., to accommodate Lanspora, Phomatospora and Tenuimurus, gen. nov. Mycosphere 7:628–641.
  • Simmons DR, De Beer ZW, Huang YT, Bateman C, Campbell AS, Dreaden TJ, Li Y, Ploetz RC, Black A, Li HF, Chen CY. 2016. New Raffaelea species (Ophiostomatales) from the USA and Taiwan associated with ambrosia beetles and plant hosts. IMA Fungus 7:265.
  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the entomological Society of America 87:651–701.
  • Six DL. 2020. A major symbiont shift supports a major niche shift in a clade of tree‐killing bark beetles. Ecological Entomology 45:190–201.
  • Six DL, Stone WD, De Beer ZW, Woolfolk SW. 2009. Ambrosiella beaveri, sp. nov., associated with an exotic ambrosia beetle, Xylosandrus mutilatus (Coleoptera: Curculionidae, Scolytinae), in Mississippi, USA. Antonie van Leeuwenhoek 96: 17–29.
  • Skelton J, Jusino MA, Li Y, Bateman C, Thai PH, Wu C, Lindner DL, Hulcr J. 2018. Detecting symbioses in complex communities: the fungal symbionts of bark and ambrosia beetles within Asian pines. Microbial Ecology 76:839–850.
  • SkeltonJ, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J. 2019. A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proceedings of the Royal Society B: Biological Sciences 286: 20182127.
  • Su H, Hyde KD, Maharachchikumbura SS, Ariyawansa HA, Luo Z, Promputtha I, Tian Q, Lin C, Shang Q, Zhao Y, Chai H. 2016. The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Diversity 80:375–409.
  • Suh SO, Zhou J. 2010. Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. International Journal of Systematic and Evolutionary Microbiology 60:1702–1708.
  • Swofford DL. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0 b10. Sunderland, Massachusetts: Sinauer Associates.
  • Szujecki A. 1993. Marian Nunberg 1896–1986. Nauka Polska 41:145–149.
  • Vanderpool D, Bracewell RR, McCutcheon JP. 2017. Know your farmer: ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Molecular Ecology, doi:10.1111/mec.14394
  • Wingfield BD, Berger DK, Steenkamp ET, Lim HJ, Duong TA, Bluhm BH, De Beer ZW, De Vos L, Fourie G, Naidoo K, Olivier N. 2017. Draft genome of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Huntiella decipiens and Ophiostoma ips. IMA Fungus 8:385.
  • Wood SL. 1957. Ambrosia beetles of the tribe Xyloterini (Coleoptera: Scolytidae) in North America. The Canadian Entomologist 89:337–354.
  • Wood SL. 1986. A reclassification of the genera of Scolytidae (Coleoptera). Great Basin Naturalist Memoirs 10:1–126.
  • Wood SL, Bright DE. 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), part 2: Taxonomic Index Volume A. Great Basin Naturalist Memoirs 13:1–833.
  • Wuest CE, Harrington TC, Fraedrich SW, Yun HY, Lu SS. 2017. Genetic variation in native populations of the laurel wilt pathogen, Raffaelea lauricola, in Taiwan and Japan and the introduced population in the United States. Plant Disease 101:619–628.
  • Xia JW, Ma YR, Li Z, Zhang XG. 2017. Acrodictys-like wood decay fungi from southern China, with two new families Acrodictyaceae and Junewangiaceae. Scientific Reports 7:7888.
  • Yang J, Maharachchikumbura SS, Bhat DJ, McKenzie EH, Bahkali AH, Jones EG, Liu ZY. 2015. Aquapteridospora lignicola gen. et sp. nov., a new hyphomycetous taxon (Sordariomycetes) from wood submerged in a freshwater stream. Cryptogamie, Mycologie 36:469–479.
  • Yang J, Maharachchikumbura SS, Liu JK, Hyde KD, Jones EG, Al-Sadi AM, Liu ZY. 2018. Pseudostanjehughesia aquitropica gen. et sp. nov. and Sporidesmium sensu lato species from freshwater habitats. Mycological Progress 17:591–616.
  • Zhang H, Dong W, Hyde KD, Maharachchikumbura SS, Hongsanan S, Bhat DJ, Al-Sadi AM, Zhang D. 2017. Towards a natural classification of Annulatascaceae-like taxa: introducing Atractosporales ord. nov. and six new families. Fungal Diversity 85:75–110.
  • Zimmerman G. 1973. Die Pilzflora einiger im Holz lebender Borkenkäfer. Material und Organismen 8:121–131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.