296
Views
3
CrossRef citations to date
0
Altmetric
Ecology

Ecuadorian Coptoborus beetles harbor Fusarium and Graphium fungi previously associated with Euwallacea ambrosia beetles

ORCID Icon, & ORCID Icon
Pages 487-500 | Received 15 Jun 2021, Accepted 09 Apr 2022, Published online: 24 May 2022

LITERATURE CITED

  • Alamouti SM, Tsui CKM, Breuil C. 2009. Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res. 113(8):822–35.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–10.
  • Aoki T, O’Donnell K, Homma Y, Lattanzi AR. 2003. Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex. F. Virguliforme in North America and F. Tucumaniae in South America, Mycologia. 95:660–84.
  • Aoki T, Liyanage PNH, Konkol JL, Ploetz RC, Smith JA, Kasson MT, Freeman S, Geiser DM, O’Donnell K. 2021. Three novel ambrosia fusarium clade species producing multiseptate “dolphin-shaped” conidia, and an augmented description of fusarium kuroshium. Mycologia. 133:1089–109.
  • Arie T. 2019. Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. J Pestic Sci. 44(4):275–81.
  • Aukema JE, McCullough DG, von Holle B, Liebhold AM, Britton K, Frankel SJ. 2010. Historical accumulation of nonindigenous forest pests in the continental United States. BioScience. 60(11):886–97.
  • Baker JM, Norris DM. 1968. A complex of fungi mutualistically involved in the nutrition of the ambrosia beetle Xyleborus ferrugineus. J Invertebr Pathol. 11(2):246–50.
  • Batra LR. 1967. Ambrosia fungi: a taxonomic revision and nutritional studies of some species. Mycologia. 59(6):976–1017.
  • Bleiker K, Six DL. 2007. Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol. 36(6):1384–96.
  • Bright DE. 2019. A taxonomic monograph of the bark and ambrosia beetles of the West Indies (Coleoptera: curculionoidea: scolytidae). Occasional Papers of the Florida State Collection of Arthropods. 12:1–491.
  • Carrillo JD, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE. 2014. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology. 63(1):54–62.
  • Carrillo JD, Dodge C, Stouthamer R, Eskalen A. 2020a. Fungal symbionts of the polyphagous and Kuroshio shot hole borers (Coleoptera: scolytinae, Euwallacea spp.) in California can support both ambrosia beetle systems on artificial media. Symbiosis. 80(2):155–68.
  • Carrillo JD, Mayorquin JS, Stajich JE, Eskalen A. 2020b. Probe-Based Multiplex Real-Time PCR as a Diagnostic Tool to Distinguish Distinct Fungal Symbionts Associated With Euwallacea kuroshio and Euwallacea whitfordiodendrus in California. Plant Disease. 104(1):227–38.
  • Cassar S, Blackwell M. 1996. Convergent origins of ambrosia fungi. Mycologia. 88(4):596–601.
  • Castro J, Smith SM, Cognato AI, Lanfranco D, Martinez M, Guachambala M. 2019. Life cycle and development of Coptoborus ochromactonus (Coleoptera: curculionidae: scolytinae), a pest of balsa. J Econ Entomol. 20:1–7.
  • Cognato AI, Hulcr J, Dole SA, Jordal BH. 2011. Phylogeny of haplo-diploid fungus-growing ambrosia beetles (Curculionidae: scolytinae: xyleborini) inferred from molecular and morphological data. Zool Scr. 40(2):174–86.
  • Cognato AI, Hoebeke ER, Kajimura H, Smith SM. 2015. History of exotic ambrosia beetles Euwallacea interjectus and Euwallacea validus (Coleoptera: curculionidae: xyleborini) in the United States. J Econ Entomol. 108(3):1129–35.
  • Crous PW, Lombard L, Sandoval-Denis M, Seifert KA, Schroers H-J, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, et al.33.Vizzini A, Weir BS, Wijayawardene NN, Xia JW, Yáñez-Morales MJ, Yurkov A, Zamora JC, Zare R, Zhang CL, Thines Meditors.2021.Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology. 98:1–184.
  • Cruywagen EM, de Beer Zw, Roux J, Wingfield MJ. 2010. Three new Graphium species from baobab trees in South Africa and Madagascar. Persoonia. 25(1):61–71.
  • Demissie ZA, Foote SJ, Tan Y, Loewen MC. 2018. Profiling of the transcriptomic responses of Clonostachys rosea upon treatment with Fusarium graminearum Secretome. Frontiers of Microbiology. 9:1061.
  • Eggers H. 1928. Ipidae (Coleoptera) da America do Sul. Archivos Do Instituto Biologico de Defesa Agricola E Animal. 1:83–99.
  • Eskalen A, Stouthamer R, Lynch SC, Rugman-Jones PF, Twizeyimana M, Gonzalez A, Thibault T. 2013. Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: scolytinae) vector in southern California. Plant Disease. 97(7):938–51.
  • Fisher M, Henk CDA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. 2012. Emerging fungal threats to animal, plant, and ecosystem health. Nature. 484(7393):186–94.
  • Francke-Grosmann H. 1967. Ectosymbiosis in wood-inhabiting insects. In: Henry SM, editor. Symbiosis Volume II: associations of invertebrates, birds, ruminants, and other biota. New York (New York): Academic Press; p. 141–205.
  • Freeman S, Sharon M, Maymon M, Mendel Z, Protasov A, Aoki T, Eskalen A, O’Donnell K. 2013. Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia. 105(6):1595–606.
  • Freeman S, Sharon M, Dori-Bachash M, Maymon M, Belausov E, Maoz Y, Margalit O, Protasov A, Mendel Z. 2016. Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. fornicatus. Symbiosis. 68(1–3):115–28.
  • Gardner DE. 1980. Acacia koa Seedling Wilt Caused by Fusarium oxysporumf. spkoae, fspnov. Koae F. Sp. Nov. Phytopathology. 70(7):594–97.
  • Gebhardt H, Begerow D, Oberwinkler F. 2004. Identification of the ambrosia fungus of Xyleborus monographus and X. dryographus (Coleoptera: Curculionidae, Scolytinae). Mycological Progress. 3:95–102.
  • Gohli J, Kirkendall LR, Smith SM, Cognato AI, Hulcr J, Jordal BH. 2017. Biological factors contributing to bark and ambrosia beetle species diversification. Evolution. 71(5):1258–72.
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–21.
  • Haack RA. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Canadian Journal of Forest Research. 36(2):269–88.
  • Harrington TC, Aghayeva DN, Fraedrich SW. 2010. New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon. 111(1):337–61.
  • Hasegawa M, Hiroshia K, Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrional DNA. J Mol Evol. 22(2):160–74.
  • Hofstetter RW, Dinkins-Bookwalter J, Davis TS, Klepzig KD. 2015. Symbiotic associations of bark beetles. In: Vega FE, Hofstetter RW, editors. Bark beetles: biology and ecology of native and invasive species. London (UK): Academic Press; p. 209–45.
  • Hubbard HG. 1897. The ambrosia beetles of the United States (illustrated). Bulletin of the United States Department of Agriculture Division of Entomology New Series. 7:9–30.
  • Hulcr J, Kolarík M, Kirkendall LR. 2007. A new record of fungus-beetle symbiosis in Scolytodes bark beetles (Scolytinae, Curculionidae, Coleoptera). Symbiosis. 43:151–59.
  • Hulcr J, Atkinson TH, Cognato AI, Jordal BH, McKenna DD. 2015. Morphology, taxonomy, and phylogenetics of bark beetles. In: Vega FE, Hofstetter RW, editors. Bark beetles: biology and ecology of native and invasive species. London (UK): Academic Press; p. 41–84.
  • Jacobs K, Kirisits T, Wingfield MJ. 2003. Taxonomic re-evaluation of three related species of graphium, based on morphology, ecology and phylogeny. Mycologia. 95(4):714–27.
  • Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD. 2004. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res. 108(4):411–18.
  • Jankowiak R, Ciach M, Bilański P, Linnnakoski R. 2019. Diversity of wood-inhabiting fungi in woodpecker nest cavities in southern Poland. Acta Mycologia. 54:1126.
  • Johnson AJ, McKenna DD, Jordal BH, Cognato AI, Smith SM, Lemmon AR, Lemmon EM, Hulcr J. 2018. Phylogenomics clarifies repeated evolutionary origins of inbreeding and fungus farming in bark beetles (Curculionidae, Scolytinae). Molecular Phylogenics and Evolution. 127:229–38.
  • Jones KG, Blackwell M. 1998. Phylogenetic analysis of ambrosial species in the genus Raffaelea based on 18S rDNA sequences. Mycol Res. 102(6):661–65.
  • Jordal BH, Normark BB, Farrell BD. 2000. Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae, Scolytinae). Biological Journal of the Linnean Society. 71(3):483–99.
  • Jordal BH, Cognato AI. 2012. Molecular phylogeny of bark beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evolution. 12(1):133.
  • Kasson MT, O’Donnell K, Rooney AP, Sink S, Ploetz RC, Ploetz JN, Konkol JL, Carrillo D, Freeman S, Mendel Z, et al. 2013. An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genetics and Biology. 56:147–57.
  • Kirkendall LR, Ødegaard F. 2007. Ongoing invasions of old-growth tropical forests: establishment of three incestuous beetle species in southern central america (Curculionidae: scolytinae). Zootaxa. 1588(1):53–62.
  • Klepzig KD, Moser JC, Lombardero MJ, Ayers MP, Hofstetter RW, Walkinshaw CJ. 2001. Mutualism and antagonism: ecological interactions among bark beetles, mites, and fungi. In: Jeger MJ, Spence NJ, editors. Biotic interactions in plant-pathogen associations. Oxon (UK): CABI Publishing; p. 237–67.
  • Klepzig KD. 2006. Melanin and the southern pine beetle-fungus symbiosis. Symbiosis. 40:137–40.
  • Kok LT. 1979. Insect-fungus symbiosis: nutrition mutualism and commensalism. In: Batra LR, editor. Lipids of ambrosia fungi and the life of mutualistic beetles. Montclair (New Jersey): Allanheld Osmun & Co; p. 33–52.
  • Kolarík M, Hulcr J. 2008. Mycobiota associated with the ambrosia beetle Scolytodes unipunctatus (Coleoptera: curculionidae, Scolytinae). Mycol Res. 113(1):44–60.
  • Lanave C, Preparata G, Saccone C, Serio G. 1984. A new method for calculating evolutionary substitution rates. J Mol Evol. 20(1):86–93.
  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 34:772–73.
  • Li Y, Simmons DR, Bateman CC, Short DPG, Kasson MT, Rabaglia RJ, Hulcr J. 2015. New fungus-insect symbiosis: culturing, molecular, and historical methods determine saprophytic Polyporales mutualists of Ambrosiodmus ambrosia beetles. PLoS ONE. 10:e0137689.
  • Li X, Guo W, Wen Y, Solanki MK, Ding J. 2016. Transmission of symbiotic fungus with a nonsocial leaf-rolling weevil. J Asia Pac Entomol. 19(3):619–24.
  • Liebhold AM, Kean JM. 2018. Eradication and containment of non-native forest insects: successes and failures. J Pest Sci (2004). 92(1):83–91.
  • Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, et al. 2016. Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae spnov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia. 108(2):313–29.
  • Lynn KMT, Wingfield MJ, Durán A, Marincowitz S, Oliveira LSS, de Beer ZW, Barnes I. 2020. Euwallacea perbrevis (Coleoptera: curculionidae: scolytinae), a confirmed pest on Acacia crassicarpa in Riau, Indonesia, and a new fungal symbiont; Fusarium rekanum sp. nov. Antonie van Leeuwenhoek. 113(6):803–23.
  • Madeira F, Mi Park Y, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARM, Potter SC, Finn RD, et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47:W636–W641.
  • Malacrinó A, Rassati D, Schena L, Mehzabin R, Battisti A, Palmeri V. 2017. Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecol. 28:44–52.
  • Malloch D, Blackwell M. 1993. Dispersal biology of the ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, Webber JF, editors. Ceratocystis and Ophiostoma: taxonomy ecology and pathogenicity. St. Paul (Minnesota): APS Press; p. 195–206.
  • Marini L, Haack RA, Rabaglia RJ, Toffolo EP, Battisti A, Faccoli M. 2011. Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biol Invasions. 13(10):2275–88.
  • Mayers CG, McNew DL, Harrington TC, Roeper RA, Fraedrich SW, Biedermann PHW, Castrillo LA, Reed AE. 2015. Three genera in Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biol. 119(11):1075–92.
  • Mayers CG, Harrington TC, Masuya H, Jordal BH, McNew DL, Shih HH, Roets F, Kietzka GJ. 2020a. Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae with five new fungal genera and seven new species. Persoonia. 44(1):41–66.
  • Mayers CG, Harrington TC, Mcnew DL, Roeper RA, Biedermann PHW, Masuya H, Bateman CC. 2020b. Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini. Mycologia. 112(6):1104–37.
  • Mendel Z, Protasov A, Sharon M, Zveibil AYSB, O’Donnell K, Rabaglia R, Wysoki M, Freeman S. 2012. An ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica. 40(3):235–38.
  • Miller KE, Inward DJG, Gomez-Rodriguez C, Baselga A, Vogler AP. 2019. Predicting the unpredictable: how host specific is the microbiota of bark and ambrosia beetles? Fungal Ecol. 42:100854.
  • Mohali SR, Stewart J. 2017. Microfungi associated to diseases on Theobroma cacao in Merida state- Venezuela. Poster presented at the annual meeting of the Mycological Society of America; July 16–19, 2017; Athens, Georgia, USA.
  • Musvuugwa T, de Beer Zw, Dreyer L, Duong T, Marincowitz S, Oberlander KC, Roets F, de Beer ZW. 2020. New ophiostomatoid fungi from wounds on storm-damaged trees in Afromontane forests of the Cape Floristic region. Mycological Progress. 19(1):81–95.
  • Na F, Carrillo JD, Mayorquin JS, Ndinga-Muniania C, Stajich JE, Stouthamer R, Huang Y, Lin Y, Chen C, Eskalen A. 2018. Two novel fungal symbionts fusarium kuroshium sp. nov. and graphium kuroshium spnov of kuroshio shot hole borer (euwallacea sp. nr. fornicatus) cause fusarium dieback on woody host species in california. Plant Disease. 102(6):1154–64.
  • Norris DM. 1965. The complex of fungi essential to growth and development of Xyleborus sharpi in wood. Holz und Organismen. 1:523–29.
  • Norris DM, Baker JM. 1968. A minimal nutritional substrate required by Fusarium solani to fulfill its mutualistic relationship with Xyleborus ferrugineus. Ann Entomol Soc Am. 61(6):1473–75.
  • Nygren K, Dubey M, Zapparata A, Iqbal M, Tzelepis GD, Durling MB, Jensen DF, Karlsson M. 2018. The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evol Appl. 11(6):931–49.
  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC 1998. Multiple origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Science of the United States of America. 95:2044–49.
  • O’Donnell K, Sarver BAJ, Brandt M, Chang DC, Noble-Wang J, Park J, Sutton DA, Benjamin L, Lindsley M, Padhye A, et al. 2007. Phylogenetic diversity and multisphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol. 45(7):2235–48.
  • O’Donnell K, Sutton DA, Rinaldi MG, Sarver BAJ, Balajee SA, Schroers HJ, Summerbell RC, VARG R, Crous PW, Zhang N, et al. 2010. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol. 48(10):3708–18.
  • O’Donnell K, Humber RA, Geiser DM, Kang S, Park B, VARG R, Crous PW, Johnston PR, Aoki T, Rooney AP, et al. 2012. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID andFusarium MLST. Mycologia. 104(2):427–45.
  • O’Donnell K, Sink S, Libeskind-Hadas R, Hulcr J, Kasson MT, Ploetz RC, Konkol JL, Ploetz JN, Carrillo D, Campbell A, et al. 2015. Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism. Fungal Genetics and Biology. 82:277–90.
  • O’Donnell K, Libeskind-Hadas R, Hulcr J, Bateman C, Kasson MT, Ploetz RC, Konkol JL, Ploetz JN, Carrillo D, Campbell A, et al. 2016. invasive asian fusarium - euwallacea ambrosia beetle mutualists pose a serious threat to forests, urban landscapes and the avocado industry. Phytoparasitica. 44(4):435–42.
  • Okada K, Kiristis T, Wingfield MJ. 2003. Taxonomic re-evaluation of three related species of Graphium, based on morphology, ecology. And Phylogeny Mycologia. 95:714–27.
  • Paciura D, Zhou XD, de Beer Zw, Jacobs K, Ye H, Wingfield MJ, De Beer ZW. 2010. Characterisation of synnematous bark beetle-associated fungi from China, including Graphium carbonarium sp. nov. Fungal Divers. 40(1):75–88.
  • Ploetz RC. 2006. Fusarium Wilt of banana is caused by several pathogens referred to as fusarium oxysporum f. sp. cubense. Phytopathology®. 96(6):653–56.
  • Ploetz RC, Konkol JK, Narvaez T, Duncan RE, Saucedo RJ, Campbell A, Mantilla J, Carrillo D, Kendra PE. 2017. Presence and prevalence of Raffaelea lauricola, cause of Laurel Wilt, in different species of ambrosia beetle in Florida, USA. J Econ Entomol. 110:347–54.
  • Rabaglia RJ, Dole SA, Cognato AI. 2006. Review of american xyleborina (coleoptera: curculionidae: scolytinae) occurring north of mexico, with an Illustrated Key. Ann Entomol Soc Am. 99(6):1034–56.
  • Rabaglia RJ, Cognato AI, Hoebeke ER, Johnson CW, Labonte JR, Carter ME, Vlach JJ. 2019. Early detection and rapid response: a 10-year summary of the USDA Forest Service program for non-native bark and ambrosia beetles. American Entomologist. 65:29–42.
  • Rassati D, Faccoli M, Battisti A, Marini L. 2016. Habitat and climactic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biol Invasions. 18:2809–21.
  • Rodríguez F, Oliver JL, Marín A, Medina JR. 1990. The general stochastic model of nucleotide substitution. J Theor Biol. 142(4):485–501.
  • Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics. 19(12):1562–74.
  • Sampson FW. 1921. Further notes on Platypodidae and Scolytidae collected by Mr. G. E. Bryant and Others. The Annals and Magazine of Natural History. 7:25–37.
  • Saremi H, Ammarellou A, Marefat A, Okovvat SM. 2008. Binam a rice cultivar, resistant for root rot disease on rice caused by fusarium moniliforme in northwest, iran. International Journal of Botany. 4(4):383–89.
  • Saucedo JR, Ploez RC, Konkol JL, Ángel M, Mantilla J, Menocal O, Carrillo D. 2017. Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola. Raffaelea lauricola. Symbiosis. 75(1):29–38.
  • Schedl W. 1962. Ein beitrag zur kenntnis der pilzübertragungsweise bei xylomycetophagen Scolytiden (Coleoptera). Osterreichische Akademie der Wissenschaften, Mathmatisch-Naturwissenschtliche Kalsse. 171:363–87.
  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Barcoding Consortium F. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Science of the United States of America. 109:6241–46.
  • Schroers HJ, Samuels GJ, Seifert KA, Gams W. 1999. Classification of the mycoparasitic Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladum-like fungi. Mycologia. 91(2):365–85.
  • Short DPG, O’Donnell K, Stajich JE, Hulcr J, Kijimoto T, Berger MC, Macias AM, Spahr EJ, Bateman CC, Eskalen A, et al. 2017. PCR multiplexes discriminate fusarium symbionts of invasive euwallacea ambrosia beetles that inflict damage on numerous tree species throughout the united states. Plant Disease. 101(1):233–40.
  • Six DL. 2003. Bark beetle-fungus symbioses. In: Bourtzis K, Miller TA, editors. Insect symbiosis: contemporary topics in entomology services. Boca Raton (Florida): CRC Press; p. 97–114.
  • Six DL. 2012. Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects. 3(1):339–66.
  • Skelton J, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J 2019. A selective fungal transport organ (mycangium) maintains course phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proceedings of the Royal Society B 286:20182127.
  • Smith SM, Hulcr J. 2015. Scolytus and other economically important bark and ambrosia beetles. In: Vega FE, Hofstetter RW, editors. Bark beetles: biology and ecology of native and invasive species. London (UK): Academic Press; p. 495–531.
  • Smith SM, Petrov AV, Cognato AI. 2017. Beetles (Coleoptera) of Peru: a survey of the families Curculionidae: scolytinae. The Coleopterists Bulletin. 71(1):77–94.
  • Smith SM, Gomez DF, Beaver RA, Hulcr J, Cognato AI. 2019. Reassessment of the species in the Euwallacea fornicatus (Coleoptera: curculionidae: scolytinae) complex after the rediscovery of the “lost” type specimen. Insects. 10(9):261.
  • Smith SM, Cognato AI. 2021. A Revision of the Neotropical genus Coptoborus Hopkins (Coleoptera, Curculionidae, Scolytinae, Xyleborini). In: Spence J, Casale A, Assmann T, Liebherr JK, Penev L, editors. Systematic Zoology and Biodiversity Science: a tribute to Terry Erwin (1940–2020), Vol. 1044. ZooKeys; p. 609–720.
  • Smyth CW, Sarmiento-Ramírez JM, Short DPG, Diéguez-Uribeondo J, O’Donnell K, Geiser DM, Hogan DA. 2019. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). PLoS Pathog. 15:e1007682.
  • Stauder CM, Utano NM, Kasson MT. 2020. Resolving host and species boundaries for perithecia-producing nectriaceous fungi across the central Appalachian Mountains. Fungal Ecol. 47:100980.
  • Stilwell AR, Smith AM, Cognato AI, Martinez M, Flowers RW. 2014. Coptoborus ochromactonus, n. sp. (Coleoptera: curculionidae: scolytinae), an Emerging Pest of Cultivated Balsa (Malvales: malvaceae) in Ecuador. J Econ Entomol. 107(2):675–83.
  • Summerell BA, Laurence MH, Liew ECY, Leslie JF. 2010. Biogeography and phylogeography of Fusarium: a review. Fungal Divers. 44(1):3–13.
  • Swofford DL. 2002. PAUP*. phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sunderland (Massachusetts): Sinauer Associates.
  • White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to the methods and applications. New York (New York): Academic Press Inc; p. 315–22.
  • Wingfield MJ, Gibbs JN. 1991. Leptographium and Graphium species associated with pine-infesting bark beetles in England. Mycol Res. 11(11):1257–60.
  • Wood SL, Bright DE. 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), part 2: taxonomic index. Great Basin Naturalist Memoirs. 13:1–1553.
  • Wood SL. 2007. Bark and ambrosia beetles of south america (coleoptera: scolytidae) monte l bean. Provo (Utah): Science Museum, Brigham Young University; p. 900.
  • Xue AG, Chen Y, Voldeng HD, Fedak G, Savard ME, Längle T, Zhang J, Harmen GE. 2014. Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biological Control. 73:2–7.
  • Yu H, Sutton JC. 1997. Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Canadian Journal of Plant Pathology. 19(3):237–336.
  • Zhang N, O’Donnell K, Sutton DANFA, Summerbell RC, Padhye AA, Geiser DM. 2006. Members of the fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol. 44(6):2186–90.
  • Zhang L, Yang J, Niu Q, Xhao X, Ye F, Liang L, Zhang KQ. 2008. Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biotechnol. 78(6):983–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.