283
Views
3
CrossRef citations to date
0
Altmetric
Biochemistry and Physiology

In vitro thermal tolerance of a hypervirulent lineage of Batrachochytrium dendrobatidis: Growth arrestment by elevated temperature and recovery following thermal treatment

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 661-669 | Received 15 Nov 2021, Accepted 09 Apr 2022, Published online: 06 Jun 2022

LITERATURE CITED

  • Andre SE, Parker J, Briggs CJ. 2008. Effect of temperature on host response to Batrachochytrium dendrobatidis infection in the mountain yellow-legged frog (Rana muscosa). J Wildl Dis. 44:716–20.
  • Berger L, Speare R, Hines HB, Marantelli G, Hyatt AD, McDonald KR, Skerratt LF, Olsen V, Clarke JM, Gillespie G, et al. 2004. Effect of season and temperature on frog mortality in amphibians due to chytridiomycosis. Aust Vet J. 82:434–39.
  • Berger L, Speare R, Pessier A, Voyles J, Skerratt LF. 2010. Treatment of chytridiomycosis requires urgent clinical trials. Dis Aquat Organ. 92:165–74.
  • Bishop PJ, Speare R, Poulter R, Butler M, Speare BJ, Hyatt A, Olsen V, Haigh A. 2009. Elimination of the amphibian chytrid fungus Batrachochytrium dendrobatidis by Archey’s frog Leiopelma archeyi. Dis Aquat Organ. 84:9–15.
  • Bosch J, Sanchez-Tomé E, Fernández-Loras A, Oliver JA, Fisher MC, Garner TWJ. 2015. Successful elimination of a lethal wildlife infectious disease in nature. Biol Lett. 11:20150874.
  • Bradley PW, Brawner MD, Raffel TR, Rohr JR, Olson DH, Blaustein AR. 2019. Shifts in temperature influence how Batrachochytrium dendrobatidis infects amphibian larvae. PLoS ONE. 14:1–13.
  • Brem FMR, Parris MJ, Padgett-Flohr GE. 2013. Re-isolating Batrachochytrium dendrobatidis from an amphibian host increases pathogenicity in a subsequent exposure. PLoS ONE. 8:1–7.
  • Chardard D, Penrad-Mobayed M, Chesnel A, Pieau C, Dournon C. 2004. Thermal sex reversals in amphibians. In: Valenzuela N, Lance VA, editors. Temperature-dependent sex determination in vertebrates. Washington: Smithsonian Books. p. 59–67.
  • Chatfield MWH, Richards-Zawacki CL. 2011. Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs. Dis Aquat Organ. 94:235–38.
  • Cohen JM, Civitello DJ, Venesky MD, McMahon TA, Rohr JR. 2019a. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob Chang Biol. 25:927–37.
  • Cohen JM, McMahon TA, Ramsay C, Roznik EA, Sauer EL, Bessler S, Civitello DJ, Delius BK, Halstead N, Knutie SA, et al. 2019b. Impacts of thermal mismatches on chytrid fungus Batrachochytrium dendrobatidis prevalence are moderated by life stage, body size, elevation and latitude. Ecol Lett. 22:817–25.
  • Cohen JM, Venesky MD, Sauer EL, Civitello DJ, McMahon TA, Roznik EA, Rohr JR. 2017. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol Lett. 20:184–93.
  • Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du PLH, et al. 2011. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences. 108:18732–36
  • Forrest MJ, Schlaepfer MA. 2011. Nothing a hot bath won’t cure: infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings. PLoS ONE. 6:e28444.
  • Garner TWJ, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AA, Weldon C, Fisher MC, Bosch J. 2016. Mitigating amphibian chytridiomycoses in nature. Philos Trans R Soc B: Biol Sci. 371:20160207.
  • Geiger CC, Küpfer E, Schär S, Wolf S, Schmidt BR. 2011. Elevated temperature clears chytrid fungus infections from tadpoles of the midwife toad, Alytes obstetricans. Amphibia Reptilia. 32:276–80.
  • Greenspan SE, Bower DS, Webb RJ, Roznik EA, Stevenson LA, Berger L, Marantelli G, Pike DA, Schwarzkopf L, Alford RA. 2017. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct Ecol. 31:2274–86.
  • Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. 2020. Immunological aspects of chytridiomycosis. J Fungi. 6:1–24.
  • Gutiérrez-Pesquera LM, Tejedo M, Olalla-Tárraga MA, Duarte H, Nicieza A, Solé M. 2016. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J Biogeogr. 43:1166–78.
  • Heard GW, Scroggie MP, Clemann N, Ramsey DSL. 2014. Wetland characteristics influence disease risk for a threatened amphibian. Ecol Appl. 24:650–62.
  • Hettyey A, Ujszegi J, Herczeg D, Holly D, Vörös J, Schmidt BR, Bosch J. 2019. Mitigating disease impacts in amphibian populations: capitalizing on the thermal optimum mismatch between a pathogen and its host. Front Ecol Evol. 7:254.
  • IUCN. 2020. The IUCN red list of threatened species. Version. 2019–3.
  • James TY, Toledo LF, Rödder D, Leite D da S, Belasen AM, Betancourt-Román CM, Jenkinson TS, Soto-Azat C, Lambertini C, Longo AV, et al. 2015. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol Evol. 5:4079–97.
  • Johnson ML, Berger L, Philips L, Speare R. 2003. Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Organ. 57:255–60.
  • Julious SA. 2004. Using confidence intervals around individual means to assess statistical significance between two means. Pharm Stat. 3:217–22.
  • Lips KR. 2016. Overview of chytrid emergence and impacts on amphibians. Philos Trans R Soc B: Biol Sci. 371:20150465.
  • Longcore JE, Pessier AP, Nichols DK. 1999. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia. 91:219–27.
  • McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, et al. 2014. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature. 511:224–27.
  • Muletz-Wolz CR, Barnett SE, DiRenzo GV, Zamudio KR, Toledo LF, James TY, Lips KR. 2019. Diverse genotypes of the amphibian-killing fungus produce distinct phenotypes through plastic responses to temperature. J Evol Biol. 32:287–98.
  • O’Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, Kosch TA, Murray KA, Brankovics B, Fumagalli M, et al. 2018. Recent Asian origin of chytrid fungi causing global amphibian declines. Science. 360:621–27.
  • Parker JM, Mikaelian I, Hahn N, Diggs HE. 2002. Clinical diagnosis and treatment of epidermal chytridiomycosis in African clawed frogs (Xenopus tropicalis). Comp Med. 52(3):265–68.
  • Piotrowski JS, Annis SL, Longcore JE. 2004. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia. 96:9–15.
  • Raffel TR, Rohr JR, Kiesecker JM, Hudson PJ. 2006. Negative effects of changing temperature on amphibian immunity under field conditions. Funct Ecol. 20:819–28.
  • Raffel TR, Michel PJ, Sites EW, Rohr JR. 2010. What drives chytrid infections in newt populations? Associations with substrate, temperature, and shade. EcoHealth. 7:526–36.
  • Ribas L, Li MS, Doddington BJ, Robert J, Seidel JA, Simon Kroll J, Zimmerman LB, Grassly NC, Garner TWJ, Fisher MC. 2009. Expression profiling the temperature-dependent amphibian response to infection by Batrachochytrium dendrobatidis. PLoS ONE. 4:e8408.
  • Robak MJ, Richards-Zawacki CL. 2018. Temperature-dependent effects of cutaneous bacteria on a frog’s tolerance of fungal infection. Front Microbiol. 9:410.
  • Russell WMS, Burch R. 1959. The principles of humane experimental technique. London: Methuen.
  • Sauer EL, Fuller RC, Richards-Zawacki CL, Sonn J, Sperry JH, Rohr JR. 2018. Variation in individual temperature preferences, not behavioural fever, affects susceptibility to chytridiomycosis in amphibians. Proceedings of the Royal Society B: Biological Sciences. 285
  • Scheele BC, Hunter DA, Grogan LF, Berger L, Kolby JE, Mcfadden MS, Marantelli G, Skerratt LF, Driscoll DA. 2014. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conserv Biol. 28:1195–205.
  • Scheele BC, Driscoll DA, Fischer J, Fletcher AW, Hanspach J, Vörös J, Hartel T. 2015. Landscape context influences chytrid fungus distribution in an endangered European amphibian. Anim Conserv. 18:480–88.
  • Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, et al. 2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 363:1459–63.
  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N. 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 4:125–34.
  • Sonn JM, Berman S, Richards-Zawacki CL. 2017. The influence of temperature on chytridiomycosis in vivo. EcoHealth. 14:762–70.
  • Stevenson LA, Alford RA, Bell SC, Roznik EA, Berger L, Pike DA. 2013. Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE. 8:1–14.
  • Stockwell MP, Clulow J, Mahony MJ. 2012. Sodium chloride inhibits the growth and infective capacity of the amphibian chytrid fungus and increases host survival rates. PLoS ONE. 7(5):e36942.
  • Sunday JM, Bates AE, Dulvy NK. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences. 278:1823–30
  • Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences. 111:5610–15
  • Ultsch G, Bradford D, Freda J. 1999. Tadpoles: the biology of anuran larvae. Chicago: University of Chicago Press; p. 453.
  • Voyles J, Johnson LR, Briggs CJ, Cashins SD, Alford RA, Berger L, Skerratt LF, Speare R, Rosenblum EB. 2012. Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians. Ecol Evol. 2:2241–49.
  • Voyles J, Johnson LR, Rohr J, Kelly R, Barron C, Miller D, Minster J, Rosenblum EB. 2017. Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia. 184:363–73.
  • Wells KD. 2007. Temperature relations. In: The University of Chicago, ed. The ecology and behavior of amphibians. Chicago (IL): The University of Chicago Press. p. 124–27.
  • Woodhams DC, Alford RA, Marantelli G. 2003. Emerging disease of amphibians cured by elevated body temperature. Dis Aquat Organ. 55:65–67.
  • Woodhams DC, Alford RA, Briggs CJ, Johnson M, Woodhams C, Alford A, Briggs J. 2008. Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology. 89:1627–39.
  • Woodhams DC, Bosch J, Briggs CJ, Cashins S, Davis LR, Lauer A, Muths E, Puschendorf R, Schmidt BR, Sheafor B, et al. 2011. Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool. 8:8.
  • Wright RK, Cooper EL. 1981. Temperature effects on ectotherm immune responses. Dev Comp Immunol. 5:117–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.