287
Views
3
CrossRef citations to date
0
Altmetric
Applied Mycology

Box-Behnken design optimization of xylanase and cellulase production by Aspergillus fumigatus on Stipa tenacissima biomass

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 437-455 | Received 08 May 2022, Accepted 18 Apr 2023, Published online: 22 May 2023

LITERATURE CITED

  • Abdulmajeed ATA, Şahin S, Ozmen I. 2021. Production and purification of the endoglucanase enzyme from local isolate Aspergillus fumigatus HBF356. Biointerface Res Appl Chem. 12:4337–4347.
  • Al Abdallah Q, Ge W, Fortwendel JR. 2017. A simple and universal system for gene manipulation in Aspergillus fumigatus: in vitro-assembled Cas9-guide RNA ribonucleoproteins coupled with microhomology repair templates. MSphere. 2:e00446–17. doi:10.1128/mSphere.00446-17.
  • Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G. 2009. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol. 82:625–638. doi:10.1007/s00253-009-1875-1.
  • Ang SK. 2015. Cellulases and xylanase production by “Aspergillus fumigatus” SK1 through solid state fermentation for ethanol fermentation. phd. Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering.
  • Ang SK, Shaza EM, Adibah Y, Suraini AA, Madihah MS. 2013. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48:1293–1302. doi:10.1016/j.procbio.2013.06.019.
  • Antoine A, Jacqueline D, Thonart P. 2009. Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Appl Biochem Biotechnol. 160:50–62. doi:10.1007/s12010-008-8496-5.
  • Azzouz Z, Bettache A, Boucherba N. 2020a. Biotechnological production and statistical optimization of fungal xylanase by bioconversion of the lignocellulosic biomass residues in solid-state fermentation. Romania: Biomass Conversion and Biorefinery.
  • Azzouz Z, Bettache A, Boucherba N, Amghar Z, Benallaoua S. 2020b. Optimization of xylanase production by newly isolated strain Trichoderma afroharzianum isolate AZ 12 in solid state fermentation using response surface methodology. Cellul Chem Technol. 54(5–6):451–462. doi:10.35812/CelluloseChemTechnol.2020.54.46.
  • Azzouz Z, Bettache A, Boucherba N, Prieto A, Martinez MJ, Benallaoua S, Eugenio LID. 2021. Optimization of β-1,4-endoxylanase production by an Aspergillus Niger strain growing on wheat straw and application in xylooligosaccharides production. Molecules. 26:2527. doi:10.3390/molecules26092527.
  • Bailey MJ, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 23:257–270. doi:10.1016/0168-1656(92)90074-J.
  • Baş D, Boyacı İH. 2007. Modeling and optimization I: usability of response surface methodology. J Food Eng. 78:836–845. doi:10.1016/j.jfoodeng.2005.11.024.
  • Behnam S, Khanahmadi M, Karimi K, Salimian Z. 2016. Optimization of xylanase production by Mucor indicus, Mucor hiemalis, and Rhizopus oryzae through solid state fermentation. Biol J Microorganism. 4:1–10.
  • Bouiri B, Amrani M. 2010. Elemental chlorine-free bleaching halfa pulp. J Ind Eng Chem. 16:587–592. doi:10.1016/j.jiec.2010.03.015.
  • Braaksma M, Punt PJ. 2008. Aspergillus as a cell factory for protein production: controlling protease activity in fungal production. In: The Aspergilli: genomics, medical aspects, biotechnology, and research methods. Boca Raton (FL): CRC Press; p. 441.
  • Cao Y, Meng D, Lu J, Long J. 2008. Statistical optimization of xylanase production by Aspergillus Niger AN-13 under submerged fermentation using response surface methodology. Afr J Biotechnol. 7:631–638.
  • Célérier J, Cholley A. 1931. La production de l’alfa en Afrique du Nord. Annales de géographie. 40:323–325. doi:10.3406/geo.1931.11269.
  • Collins LA, Thune RL. 1996. Development of a defined minimal medium for the growth of Edwardsiella ictaluri. Appl Environ Microbiol. 62:848–852. doi:10.1128/aem.62.3.848-852.1996.
  • Cunha L, Martarello R, Souza PMD, Freitas MMD, Barros KVG, Ferreira FEX, Homem-de-Mello M, Magalhães PO. 2018. Optimization of xylanase production from Aspergillus foetidus in soybean residue. Enzyme Res. 2018:e6597017. doi:10.1155/2018/6597017.
  • Dai X-J, Liu M, Jin H-X, Jing M-Y. 2018. Optimisation of solid-state fermentation of Aspergillus Niger JL-15 for xylanase production and xylooligosaccharides preparation. Czech J Food Sci. 29:557–567. doi:10.17221/103/2010-CJFS.
  • Dalila N, Slimane B. 2008. La désertification dans les steppes algériennes: causes, impacts et actions de lutte. VertigO - la revue électronique en sciences de l’environnement. 8:1.
  • Dalla M, Mancini M, Orlando F, Natali F, Capecchi L, Orlandini S. 2014. Sweet sorghum for bioethanol production: crop responses to different water stress levels. Biomass Bioenergy. 64:211–219. doi:10.1016/j.biombioe.2014.03.033.
  • Desai DI, Iyer BD. 2020. Optimization of medium composition for cellulase-free xylanase production by solid-state fermentation on corn cob waste by Aspergillus Niger DX-23. Germany: Biomass Conversion and Biorefinery.
  • DEVELVE. 2020. Box-Behnken design.
  • Devi A, Singh A, Bajar S, Pant D, Din ZU. 2021. Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng. 9:105798. doi:10.1016/j.jece.2021.105798.
  • Dewiyanti I, Darmawi D, Muchlisin ZA, Helmi TZ, Arisa II, Rahmiati R, Destri E 2022. Cellulase enzyme activity of the bacteria isolated from mangrove ecosystem in Aceh Besar and Banda Aceh. IOP Conf Series. 951:012113.
  • El-Abbassi FE, Assarar M, Ayad R, Bourmaud A, Baley C. 2020. A review on alfa fibre (Stipa tenacissima L.): from the plant architecture to the reinforcement of polymer composites. Compos Part A Appl Sci Manuf. 128:105677. doi:10.1016/j.compositesa.2019.105677.
  • El-abbassi F, Assarar M, Ayad R, Lamdouar N 2015. Analyse experimentale et modelisation comportementale d’agro-composites a base de fibres d’alfa.
  • El-Naggar NE-A, Abdelwahed NAM, Saber WIA, Mohamed AA. 2014. Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp; Streptomyces albogriseolus subsp cellulolyticus strain NEAE-J. Brazilian J Microbiol. 45:743–756.
  • Elsayed EA, Ahmed Abdelwahed N. 2020. Medium optimization by response surface methodology for improved cholesterol oxidase production by a newly isolated Streptomyces rochei NAM-19 strain. Biomed Res Int. 2020:1–13. doi:10.1155/2020/1870807.
  • Fuller KK, Chen S, Loros JJ, Dunlap JC. 2015. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryotic Cell. 14:1073–1080. doi:10.1128/EC.00107-15.
  • Garai D, Kumar V. 2013. A Box–Behnken design approach for the production of xylanase by Aspergillus candidus under solid state fermentation and its application in saccharification of agro residues and Parthenium hysterophorus L. Ind Crops Prod. 44:352–363. doi:10.1016/j.indcrop.2012.10.027.
  • Gares M, Hiligsmann S, Kacem Chaouche N. 2020. Lignocellulosic biomass and industrial bioprocesses for the production of second generation bio-ethanol. Does It Have a Future in Algeria? SN Appl Sci. 2:1680.
  • Gares M, Hiligsmann S, Kassem Al Sayed M, Alloun W, Kacem CN. 2023. The study of the industrial aptitude of Aspergillus fumigatus strain for xylanase production. Egypt J Chem. doi:10.21608/ejchem.2023.174799.7195.
  • Jin F-J, Wang B-T, Wang Z-D, Jin L, Han P. 2022. CRISPR/Cas9-based genome editing and its application in Aspergillus Species. J Fungi. 8:467. doi:10.3390/jof8050467.
  • Johnsen HR, Krause K. 2014. Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. Int J Mol Sci. 15:830–838. doi:10.3390/ijms15010830.
  • Kaid-Harche M, Djabeur A. 2020. 12 - Fibre plants of arid regions of North Africa. In: Kozłowski RM, Mackiewicz-Talarczyk M, editors. Handbook of natural fibres. 2nd ed. England: Woodhead Publishing; p. 417–432.
  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW. 2004. Production of cellulases and hemicellulases by Aspergillus Niger KK2 from lignocellulosic biomass. Bioresour Technol. 91:153–156. doi:10.1016/S0960-8524(03)00172-X.
  • Karmakar M, Ray R. 2011. Statistical optimization of FPase production from water hyacinth using Rhizopus oryzea PR 7. J Biochem Technol. 3:225–229.
  • Khan M, Ahmad T, Yasmeen R, Imran M. 2020. Optimization of Aspergillus Tubingensis growth for cellulase production. Pak J Sci. 72:221–229.
  • Kusari S, Lamshöft M, Spiteller M. 2009. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the Anticancer pro-drug Deoxypodophyllotoxin. J App Microbiol. 107:1019–1030.
  • Lakshmi GS, Paruchuru L, Reddy SP. 2011. Sustainable bioprocess evaluation for xylanase production by isolated Aspergillus terreus and Aspergillus fumigatus under solid - state fermentation using oil palm empty fruit bunch fiber. Curr Trends Biotechnol Pharm. 5:1434–1444.
  • Liu D, Liu Q, Guo W, Liu Y, Wu M, Zhang Y, Li J, Sun W, Wang X, He Q, et al. 2022. Development of genetic tools in glucoamylase-hyperproducing industrial Aspergillus Niger strains. Biology. 11:1396. doi:10.3390/biology11101396.
  • Liu JY, Song YC, Zhang Z, Wang L, Guo ZJ, Zou WX, Tan RX. 2004. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol. 114:279–287. doi:10.1016/j.jbiotec.2004.07.008.
  • Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. 2020. Developing Aspergillus Niger as a cell factory for food enzyme production. Biotechnol Adv. 44:107630. doi:10.1016/j.biotechadv.2020.107630.
  • Lodha A, Pawar S, Rathod V. 2020. Optimised cellulase production from fungal co-culture of Trichoderma reesei NCIM 1186 and Penicillium citrinum NCIM 768 under solid state fermentation. J Environ Chem Eng. 8:103958. doi:10.1016/j.jece.2020.103958.
  • Madhavan A, Kb A, Sindhu R, Binod P, Awasthi MK, Pandey A. 2022. Aspergillus spp., a versatile cell factory for enzymes and metabolites: interventions through genome editing. Ijeb. IJEB. 60(9):1.
  • Maghchiche A, Haouam A, Immirzi B. 2013. Extraction and characterization of Algerian Alfa grass short fibers (Stipa Tenacissima). Chem Chem Technol. 7:339–344. doi:10.23939/chcht07.03.339.
  • Martău G-A, Unger P, Schneider R, Venus J, Vodnar DC, López-Gómez JP. 2021. Integration of solid state and submerged fermentations for the valorization of organic municipal solid waste. J Fungi. 7:766. doi:10.3390/jof7090766.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar | analytical chemistry. (USA): Analytical Chemistry.
  • Mrudula S, Murugammal R. 2011. Production of cellulase by Aspergillus Niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol. 42:1119–1127. doi:10.1590/S1517-83822011000300033.
  • Namnuch N, Thammasittirong A, Thammasittirong SN-R. 2021. Lignocellulose hydrolytic enzymes production by Aspergillus flavus KUB2 using submerged fermentation of sugarcane bagasse waste. Mycology. 12:119–127. doi:10.1080/21501203.2020.1806938.
  • Nargotra P, Sharma V, Lee Y-C, Tsai Y-H, Liu Y-C, Shieh C-J, Tsai M-L, Dong C-D, Kuo C-H. 2023. Microbial lignocellulolytic Enzymes for the effective valorization of lignocellulosic biomass: a review. Catalysts. 13:83. doi:10.3390/catal13010083.
  • Nieland S, Barig S, Salzmann J, Gehrau F, Zamani AI, Richter A, Ibrahim J, Gräser Y, Ng CL, Stahmann K-P. 2021. Aspergillus fumigatus AR04 obeys Arrhenius’ rule in cultivation temperature shifts from 30 to 40°C. Microb Biotechnol. 14:1422–1432. doi:10.1111/1751-7915.13739.
  • Nighojkar A, Patidar MK, Nighojkar S. 2019. 8 - Pectinases: production and applications for fruit juice beverages. In: Grumezescu AM, Holban AM, editors. Processing and sustainability of beverages. Cambridge (England): Woodhead Publishing; p. 235–273.
  • Nishio N, Tai K, Nagai S. 1979. Hydrolase production by Aspergillus Niger in solid-state cultivation. Eur J Appl Microbiol Biotechnol. 8:263–270. doi:10.1007/BF00508790.
  • O’Gorman CM, Fuller HT, Dyer PS. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 457:471–474. doi:10.1038/nature07528.
  • Olanbiwoninu AA, Odunfa SA. 2016. Production of cellulase and xylanase by Aspergillus terreus KJ829487 using cassava peels as subtrates. Adv Microbiol. 6:502–511. doi:10.4236/aim.2016.67050.
  • Oliveira SD, Araújo Padilha CED, Asevedo EA, Pimentel VC, Araújo FRD, Macedo GRD, Santos ESD. 2018. Utilization of agroindustrial residues for producing cellulases by Aspergillus fumigatus on semi-solid fermentation. J Environ Chem Eng. 6:937–944. doi:10.1016/j.jece.2017.12.038.
  • Ortiz GE, Guitart ME, Cavalitto SF, Albertó EO, Fernández-Lahore M, Blasco M. 2015. Characterization, optimization, and scale-up of cellulases production by trichoderma reesei cbs 836.91 in solid-state fermentation using agro-industrial products. Bioprocess Biosyst Eng. 38:2117–2128. doi:10.1007/s00449-015-1451-2.
  • Pathania S, Sharma N, Handa S. 2017. Optimization of culture conditions using response surface methodology for synergism production of cellulase, xylanase and pectinase by Rhizopus delemar F2 under solid state fermentation. J Pharmacogn Phytochem. 6:1872–1878.
  • Paul M, Nayak DP, Thatoi H. 2020. Optimization of xylanase from Pseudomonas mohnii isolated from simlipal biosphere reserve, Odisha, using response surface methodology. J Genet Eng Biotechnol. 18:81. doi:10.1186/s43141-020-00099-7.
  • Prasertsan P, Kittikul AH, Kunghae A, Maneesri J, Oi S. 1997. Optimization for xylanase and cellulase production from Aspergillus Niger ATTC 6275 in palm oil mill wastes and its application. World J Microbiol Biotechnol. 13:555–559. doi:10.1023/A:1018569426594.
  • Rhijn NV, Furukawa T, Zhao C, McCann BL, Bignell E, Bromley MJ. 2020. Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genet Biol: FG & B. 145:103479. doi:10.1016/j.fgb.2020.103479.
  • Semhaoui I, Zarguili I, Rezzoug SA, Maugard T, Zhao JMQ, Toyir J, Nawdali M, Maache-Rezzoug Z. 2017. Bioconversion of Moroccan Alfa (Stipa Tenacissima) by thermomechanical pretreatment combined to acid or alkali spraying for ethanol production. J Mater. 8:2619–2631.
  • Sen R, Swaminathan T. 2004. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem Eng J. 21:141–148. doi:10.1016/j.bej.2004.06.006.
  • Shahbazi A, Zhang B. 2010. 5 - Dilute and concentrated acid hydrolysis of lignocellulosic biomass, and Waldron K, editor. Bioalcohol Production. Cambridge (England): Woodhead Publishing; p. 143–158.
  • Sherief AA, El-Tanash AB, Atia N. 2010. Cellulase production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran - scialert responsive version. Res J Microbiol. 5:199–211. doi:10.3923/jm.2010.199.211.
  • Shruthi K, Yadav P, Prasad B, Chandra M. 2018. Cellulase production by Aspergillus unguis in solid state fermentation. J For Res. 30:205–212.
  • Singh BP. 2010. Industrial crops and uses. USA: Fort Valley State University; p. 1.
  • Singhania R, Sukumaran R, Pandey A. 2007. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl Biochem Biotechnol. 142:60–70. doi:10.1007/s12010-007-0019-2.
  • Singh J, Kaur P. 2012. Optimization of process parameters for cellulase production from Bacillus sp. JS14 in solid substrate fermentation using response surface methodology. Braz Arch Biol Technol. 55:505–512. doi:10.1590/S1516-89132012000400004.
  • Singh S, Tyagi CH, Dutt D, Upadhyaya JS. 2009. Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. N Biotechnol. 26:165–170. doi:10.1016/j.nbt.2009.09.004.
  • Świątek K, Gaag S, Klier A, Kruse A, Sauer J, Steinbach D. 2020. Acid hydrolysis of lignocellulosic biomass: sugars and furfurals formation. Catalysts. 10:437. doi:10.3390/catal10040437.
  • Tai WY, Tan JS, Lim V, Lee CK. 2019. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Biotechnol Prog. 35:e2781. doi:10.1002/btpr.2781.
  • Teather RM, Wood PJ. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 43:777–780. doi:10.1128/aem.43.4.777-780.1982.
  • Xin F, Geng A. 2010. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl Biochem Biotechnol. 162:295–306. doi:10.1007/s12010-009-8745-2.
  • Yadav JS. 1988. SSF of wheat straw with alcaliphilic Coprinus. Biotechnol Bioeng. 31:414–417. doi:10.1002/bit.260310504.
  • Yegin S, Buyukkileci AO, Sargin S, Goksungur Y. 2017. Exploitation of agricultural wastes and by-products for production of Aureobasidium pullulans Y-2311-1 xylanase: screening, bioprocess optimization and scale up. Waste and Biomass Valorization. 8:999–1010.
  • Yeh A-I, Y-C H, Chen S. 2010. Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym. 79:192–199.
  • Zaafouri K, Ziadi M, Ben Farah R, Farid M, Hamdi M, Regaya I. 2016. Potential of Tunisian Alfa (Stipa tenassicima) fibers for energy recovery to 2G bioethanol: study of pretreatment, enzymatic saccharification and fermentation. Biomass Bioenergy. 94:66–77.
  • Zhang C, Meng X, Wei X, Lu L. 2016. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol: FG & B. 86:47–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.