132
Views
0
CrossRef citations to date
0
Altmetric
Techniques

Proteomic characterization of Pseudogymnoascus spp. isolates from polar and temperate regions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 449-463 | Received 26 Sep 2023, Accepted 30 Jan 2024, Published online: 14 Mar 2024

LITERATURE CITED

  • Adamczyk M, Perez-Mon C, Gunz S, Frey B. 2020. Strong shifts in microbial community structure are associated with increased litter input rather than temperature in high Arctic soils. Soil Biol Biochem. 151:108054. doi:10.1016/j.soilbio.2020.108054.
  • Ali SH, Alias SA, Siang HY, Smykla J, Pang K-L, Guo S-Y, Convey P. 2013. Studies on diversity of soil microfungi in the hornsund area, spitsbergen. Poland Polar Res. 34:39–54. doi:10.2478/popore-2013-0006.
  • Arenz BE, Held BW, Jurgens JA, Blanchette RA. 2011. Fungal colonization of exotic substrates in Antarctica. Fungal Divers. 49:13–22. doi:10.1007/s13225-010-0079-4.
  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, et al. 2018. Structure and function of the global topsoil microbiome. Nature. 560:233–237. doi:10.1038/s41586-018-0386-6.
  • Bai Y, Wang S, Zhong H, Yang Q, Zhang F, Zhuang Z, Yuan J, Nie X, Wang S. 2015. Integrative analyses reveal transcriptome-proteome correlation in biological pathways and secondary metabolism clusters in a. Flavus in response to temperature. Sci Rep. 5:14582. doi:10.1038/srep14582.
  • Barratt SR, Ennos AR, Greenhalgh M, Robson GD, Handley PS. 2003. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. J Appl Microbiol. 95:78–85. doi:10.1046/j.1365-2672.2003.01961.x.
  • Batista-García RA, Kumar VV, Ariste A, Tovar-Herrera OE, Savary O, Peidro-Guzmán H, González-Abradelo D, Jackson SA, Dobson ADW, Sánchez-Carbente M, et al. 2017. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J Environ Manage. 198:1–11. doi:10.1016/j.jenvman.2017.05.010.
  • Bhadauria V, Zhao W-S, Wang L-X, Zhang Y, Liu J-H, Yang J, Kong L-A, Peng Y-L. 2007. Advances in fungal proteomics. Microbiol Res. 162:193–200. doi:10.1016/j.micres.2007.03.001.
  • Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JT, Darling SR, Gargas A, Niver R, et al. 2009. Bat white-nose syndrome: an emerging fungal pathogen? Science. 323:227. doi:10.1126/science.1163874.
  • Boer W, Folman LB, Summerbell RC, Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 29:795–811. doi:10.1016/j.femsre.2004.11.005.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3.
  • Chatterjee M, Gupta S, Bhar A, Das S. 2012. Optimization of an efficient protein extraction protocol compatible with two-dimensional electrophoresis and mass spectrometry from recalcitrant phenolic rich roots of chickpea (cicer arietinum l.). Int J Proteomics. 2012:10. doi:10.1155/2012/536963.
  • Chaturvedi V, DeFiglio H, Chaturvedi S. 2018. Phenotype profiling of white-nose syndrome pathogen pseudogymnoascus destructans and closely-related pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Res. 7:665. doi:10.12688/f1000research.15067.2.
  • Chaturvedi V, Springer DJ, Behr MJ, Ramani R, Li X, Peck MK, Ren P, Bopp DJ, Wood B, Samsonoff WA, et al. 2010. Morphological and molecular characterizations of psychrophilic fungus geomyces destructans from New York bats with white nose syndrome (wns). PLoS One. 5:e10783. doi:10.1371/journal.pone.0010783.
  • Chen S, Harmon AC. 2006. Advances in plant proteomics. Proteomics. 6:5504–5516. doi:10.1002/pmic.200600143.
  • Chomczynski P, Sacchi N. 2006. The single-step method of rna isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 1:581–585. doi:10.1038/nprot.2006.83.
  • Christen-Zaech S, Patel S, Mancini AJ. 2008. Recurrent cutaneous geomyces pannorum infection in three brothers with ichthyosis. J Am Acad Dermatol. 58(5 Suppl 1):S112–S113. doi:10.1016/j.jaad.2007.04.019.
  • Daim LD, Ooi TE, Yusof HM, Majid NA, Karsani SA. 2015. Optimization of protein extraction and two-dimensional electrophoresis protocols for oil palm leaf. Protein J. 34:304–312. doi:10.1007/s10930-015-9626-x.
  • Donovan PD, Gonzalez G, Higgins DG, Butler G, Ito K. 2018. Identification of fungi in shotgun metagenomics datasets. PLoS One. 13:e0192898. doi:10.1371/journal.pone.0192898.
  • Duncan S, Minasaki R, Farrell R, Thwaites J, Held B, Arenz B, Jurgens J, Blanchette R. 2008. Screening fungi isolated from historic discovery hut on ross island, Antarctica for cellulose degradation. Antarct Sci. 20:463–470. doi:10.1017/S0954102008001314.
  • Fabri JHTM, de Sá NP, Malavazi I, Del Poeta M. 2020. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res. 80:101063. doi:10.1016/j.plipres.2020.101063.
  • Fricker L. 2018. Quantitative peptidomics: general considerations. In: Schrader M, Fricker L, editors. Peptidomics: methods and strategies. New York (NY): Springer. p. 121–140.
  • Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS. 2009. Geomyces destructans sp. Nov. associated with bat white-nose syndrome. Mycotaxon. 108:147–154. doi:10.5248/108.147.
  • Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F. 2016. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Bio/Technol. 15:147–172.
  • Hay RJ, Ashbee HR. 2010. Mycology. In: Burns T, Breathnach S, Cox N, Griffiths C, editors. Rook’s textbook of dermatology. 8th ed. West Sussex: Wiley-Blackwell. p. 1–93.
  • Hayes MA. 2012. The geomyces fungi: ecology and distribution. BioScience. 62:819–823. doi:10.1525/bio.2012.62.9.7.
  • Isola D, Marzban G, Selbmann L, Onofri S, Laimer M, Sterflinger K. 2011. Sample preparation and 2-de procedure for protein expression profiling of black microcolonial fungi. Fungal Biol. 115:971–77. doi:10.1016/j.funbio.2011.03.001.
  • Kochkina GA, Ivanushkina NE, Akimov VN, Gilichinskii DA, Ozerskaia SM. 2007. Halo- and psychrotolerant geomyces fungi from Arctic cryopegs and marine deposits. Mikrobiologiia. 76:39–47.
  • Kolomytseva M, Myasoedova N, Samoilova A, Podieiablonskaia E, Chernykh A, Classen T, Pietruszka J, Golovleva L. 2017. Rapid identification of fungal laccases/oxidases with different ph-optimum. Process Biochem. 62:174–183. doi:10.1016/j.procbio.2017.07.027.
  • Kono Y. 1995. Apparent antibacterial activity of catalase: role of lipid hydroperoxide contamination. J Biochem. 117:42–46. doi:10.1093/oxfordjournals.jbchem.a124718.
  • Kosti I, Mandel-Gutfreund Y, Glaser F, Horwitz BA. 2010. Comparative analysis of fungal protein kinases and associated domains. BMC Genomics. 11:133. doi:10.1186/1471-2164-11-133.
  • Kramer A, Beck HC, Kumar A, Kristensen LP, Imhoff JF, Labes A. 2015. Proteomic analysis of anti-cancerous scopularide production by a marine microascus brevicaulis strain and its uv mutant. PLoS One. 10:e0140047. doi:10.1371/journal.pone.0140047.
  • Krishnan A, Convey P, Gonzalez-Rocha G, Alias SA. 2016. Production of extracellular hydrolase enzymes by fungi from king george island. Polar Biol. 39:65–76. doi:10.1007/s00300-014-1606-7.
  • Krishnan A, Convey P, Gonzalez M, Smykla J, Alias SA. 2017. Effects of temperature on extracellular hydrolase enzymes from soil microfungi. Polar Biol. 41:537–551. doi:10.1007/s00300-017-2215-z.
  • Lau BYC, Othman A. 2019. Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PLoS One. 14:e0221052. doi:10.1371/journal.pone.0221052.
  • Leushkin EV, Logacheva MD, Penin AA, Sutormin RA, Gerasimov ES, Kochkina GA, Ivanushkina NE, Vasilenko OV, Kondrashov AS, Ozerskaya SM. 2015. Comparative genome analysis of pseudogymnoascus spp. Reveals primarily clonal evolution with small genome fragments exchanged between lineages. BMC Genomics. 16:400. doi:10.1186/s12864-015-1570-9.
  • Maddela NR, Masabanda M, Leiva-Mora M. 2015. Novel diesel-oil-degrading bacteria and fungi from the ecuadorian Amazon rainforest. Wat Sci Technol. 71:1554–1561. doi:10.2166/wst.2015.142.
  • Minnis AM, Lindner DL. 2013. Phylogenetic evaluation of geomyces and allies reveals no close relatives of pseudogymnoascus destructans, comb. Nov., in bat hibernacula of eastern North America. Fungal Biol. 117:638–649. doi:10.1016/j.funbio.2013.07.001.
  • O’Donoghue AJ, Knudsen GM, Beekman C, Perry JA, Johnson AD, DeRisi JL, Craik CS, Bennett RJ. 2015. Destructin-1 is a collagen-degrading endopeptidase secreted by pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc Natl Acad Sci. 112:7478–7483. doi:10.1073/pnas.1507082112.
  • Ogaki MB, Teixeira DR, Vieira R, Lirio JM, Felizardo JPS, Abuchacra RC, Cardoso RP, Zani CL, Alves TMA, Junior PAS, et al. 2020. Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the antarctic peninsula. Fungal Biol. 124:601–611. doi:10.1016/j.funbio.2020.02.015.
  • Oliveros JC. 2007–2015. Venny. An interactive tool for comparing lists with venn’s diagrams. 2.1.0 ed. Madrid (Spain): BioinfoGP Service, Centro Nacional de Biotecnología, (CNB-CSIC).
  • Palmer JM, Drees KP, Foster JT, Lindner DL. 2018. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat Commun. 9:35. doi:10.1038/s41467-017-02441-z.
  • Pannkuk EL, Risch TS, Savary BJ. 2015. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen pseudogymnoascus destructans. PLoS One. 10:e0120508. doi:10.1371/journal.pone.0120508.
  • Parente-Rocha JA, Tomazett MV, Pigosso LL, Bailão AM, Ferreira de Souza A, Paccez JD, Baeza LC, Pereira M, Silva Bailão MG, Borges CL, et al. 2018. In vitro, ex vivo and in vivo models: a comparative analysis of paracoccidioides spp. proteomic studies. Fungal Biol. 122:505–513.
  • Patel S. 2017. A critical review on serine protease: key immune manipulator and pathology mediator. Allergologia et Immunopathologia. 45:579–591. doi:10.1016/j.aller.2016.10.011.
  • Rice AV, Currah RS. 2006. Two new species of pseudogymnoascus with geomyces anamorphs and their phylogenetic relationship with gymnostellatospora. Mycologia. 98:307–318. doi:10.1080/15572536.2006.11832703.
  • Sahay S, Chouhan D. 2018. Study on the potential of cold-active lipases from psychrotrophic fungi for detergent formulation. J Genet Eng Biotechnol. 16:319–325. doi:10.1016/j.jgeb.2018.04.006.
  • Seidl V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev. 22:36–42. doi:10.1016/j.fbr.2008.03.002.
  • Shuey MM, Drees KP, Lindner DL, Keim P, Foster JT. 2014. Highly sensitive quantitative pcr for the detection and differentiation of pseudogymnoascus destructans and other pseudogymnoascus species. Appl Environ Microbiol. 80:1726–1731.
  • Singh G, Arya SK. 2019. Antifungal and insecticidal potential of chitinases: a credible choice for the eco-friendly farming. Biocatal Agric Biotechnol. 20:101289. doi:10.1016/j.bcab.2019.101289.
  • Tajuddin N, Rizman-Idid M, Convey P, Alias Siti A. 2018. Thermal adaptation in a marine-derived tropical strain of fusarium equiseti and polar strains of pseudogymnoascus spp. under different nutrient sources. Bot Mar. 61:9. doi:10.1515/bot-2017-0049.
  • Tamadoni Jahromi S, Barzkar N. 2018. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol. 120:2147–2154. doi:10.1016/j.ijbiomac.2018.09.083.
  • Tesei D, Marzban G, Marchetti-Deschmann M, Tafer H, Arcalis E, Sterflinger K. 2015. Proteome of tolerance fine-tuning in the human pathogen black yeast exophiala dermatitidis. J Proteomics. 128:39–57. doi:10.1016/j.jprot.2015.07.007.
  • Tsuneda A. 1982. Scanning electron microscopy of pseudogymnoascus roseus. Mycologia. 74:844–847. doi:10.1080/00275514.1982.12021594.
  • Verant ML, Bohuski EA, Richgels KLD, Olival KJ, Epstein JH, Blehert DS. 2018. Determinants of pseudogymnoascus destructans within bat hibernacula: implications for surveillance and management of white-nose syndrome. J Appl Ecol. 55:820–829. doi:10.1111/1365-2664.13070.
  • Verant ML, Boyles JG, Waldrep W Jr, Wibbelt G, Blehert DS. 2012. Temperature-dependent growth of geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS One. 7:e46280. doi:10.1371/journal.pone.0046280.
  • Wilson MB, Held BW, Freiborg AH, Blanchette RA, Salomon CE. 2017. Resource capture and competitive ability of non-pathogenic pseudogymnoascus spp. and p. destructans, the cause of white-nose syndrome in bats. PLoS One. 12:e0178968. doi:10.1371/journal.pone.0178968.
  • Wong HJ. 2019. Physiological changes and DNA damage repair in Arctic and Antarctic pseudogymnoascus spp. in response to ultraviolet-b radiation [dissertation]. University of Malaya.
  • Zakharova K, Sterflinger K, Razzazi-Fazeli E, Noebauer K, Marzban G. 2014. Global proteomics of the extremophile black fungus Cryomyces antarcticus using 2d-electrophoresis. Nat Sci. 6:978–995. doi:10.4236/ns.2014.612090.
  • Zhang T, Ren P, Chaturvedi V, Chaturvedi S. 2015. Development of an agrobacterium-mediated transformation system for the cold-adapted fungi pseudogymnoascus destructans and p. Pannorum. Fungal Genet Biol. 81:73–81. doi:10.1016/j.fgb.2015.05.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.