438
Views
0
CrossRef citations to date
0
Altmetric
Ecology

Factors affecting composition of fatty acids in wild-growing forest mushrooms

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 381-391 | Received 03 Feb 2024, Accepted 20 Feb 2024, Published online: 04 Apr 2024

LITERATURE CITED

  • Amini Khoeyi Z, Seyfabadi J, Ramezanpour Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquacult Int. 20(1):41–49. doi:10.1007/s10499-011-9440-1.
  • Aussant J, Guihéneuf F, Stengel DB. 2018. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl. Microbiol. Biotechnol 102(12):5279–5297. doi:10.1007/s00253-018-9001-x.
  • Ayaz FA, Chuang LT, Torun H, Colak A, Sesli E, Presley J, Smith BR, Glew RH. 2011. Fatty acid and amino acid compositions of selected wild-edible mushrooms consumed in Turkey. Int J Food Sci Nutr. 62(4):328–335. doi:10.3109/09637486.2010.533160.
  • Baeten L, Verheyen K, Wirth C, Bruelheide H, Bussotti F, Finér L, Jaroszewicz B, Selvi F, Valladares F, Allan E, et al. 2013. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect Plant Ecol Evol Syst. 15(5):281–291. doi:10.1016/j.ppees.2013.07.002.
  • Bano Z, Rajarathnam S. 1988. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit Rev Food Sci Nutr. 27(2):87–158. doi:10.1080/10408398809527480.
  • Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira ICFR. 2008. Chemical composition and biological properties of portuguese wild mushrooms: a comprehensive Study. J Agric Food Chem. 56(10):3856–3862. doi:10.1021/jf8003114.
  • Bartoń K. 2020. MuMIn: multi-Model inference. R package version 1.43.17.
  • Bernaś E, Słupski J, Gębczyński P. 2022. Edible mushrooms of the polish carpathians. In: Hernik J, Walczycka M, Sankowski E, Harris BJ, editors. Cultural heritage – possibilities for land-centered societal development. Environmental History. 13. Cham: Springer Nature Switzerland AG. p. 259–268. doi:10.1007/978-3-030-58092-6_16
  • Binkley D, Giardina C. 1998. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry. 42(1):89–106. doi:10.1023/A:1005948126251.
  • Braun-Blanquet J. 1928. Die Pflanzengesellschaften und ihre Untersuchung, and Braun-Blanquet J, editor. Pflanƶensoƶiologie: grundƶüge der Vegetationskunde. Wien: Springer: p. 18–319. doi:10.1007/978-3-662-02056-2_3.
  • Calder PC. 2015. Functional roles of fatty acids and their effects on human health. J Parenteral Enteral Nutr. 39(1S):18S–32S. doi:10.1177/0148607115595980.
  • Dawud SM, Raulund-Rasmussen K, Domisch T, Fineer L, Jaroszewicz B, Vesterdal L. 2016. Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and PH? Ecosystems. 19(4):645–660. doi:10.1007/s10021-016-9958-1.
  • Diamantopoulou P, Papanikolaou S, Aggelis G, Philippoussis A. 2016. Adaptation of Volvariella volvacea metabolism in high carbon to nitrogen ratio media. Food Chem. 196:272–280. doi:10.1016/j.foodchem.2015.09.027.
  • Dimitrijevic MV, Mitic VD, Jovanovic OP, Jovanovic VPS, Nikolic JS, Petrovic GM, Stojanovic GS. 2018. Comparative study of fatty acids profile in eleven wild mushrooms of boletacea and russulaceae families. Chem. Biodivers 15(1):e1700434. doi:10.1002/cbdv.201700434.
  • Doğan HH, Akbaş G. 2013. Biological activity and fatty acid composition of Caesar’s mushroom. Pharm Biol. 51(7):863–871. doi:10.3109/13880209.2013.768272.
  • Dubey SK, Chaturvedi VK, Mishra D, Bajpeyee A, Tiwari A, Singh MP. 2019. Role of edible mushroom as a potent therapeutics for the diabetes and obesity. 3 Biotech. 9(12):450. doi:10.1007/s13205-019-1982-3.
  • Fox J, Weisberg S. 2017. Package “Car.” companion to applied regression. http://cran.nexr.com/web/packages/car/car.pdf.
  • Günç Ergönül P, Akata I, Kalyoncu F, Ergönül B. 2013. Fatty acid compositions of six wild edible mushroom species. Sci World J. doi:10.1155/2013/163964.
  • Hothorn T, Bretz F, Westfall P. 2008. Package “Multcomp”: simultaneous inference in general parametric models. Biometrical J. 50(3):346–363. doi:10.1002/bimj.200810425.
  • Isik H. 2020. Fatty acid contents of three wild edible mushroom species. Chem. Nat. Compd 1–3. doi:10.1007/s10600-020-03239-0.
  • Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM. 2009. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol Biochem. 41(10):2122. doi:10.1016/j.soilbio.2009.07.024.
  • Jakobsen AN, Aasen IM, Josefsen KD. 2008. Strom AR accumulation of docosahexaenoic acid-rich lipid in thraustochytrid aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol. 80:297–306. doi:10.1007/s00253-008-1537-8.
  • Jaroszewicz B, Cholewińska O, Gutowski JM, Samojlik T, Zimny M, Latałowa M. 2019. Białowieża forest—a relic of the high naturalness of European forests. Forests. 10(10):849. doi:10.3390/f10100849.
  • Joly FX, Fromin N, Kiikkilä O, Hättenschwiler S. 2016. Diversity of leaf litter leachates from temperate forest trees and its consequences for soil microbial activity. Biogeochemistry. 129(3):373–388. doi:10.1007/s10533-016-0239-z.
  • Kalač P. 2009. Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem. 113(1):9–16. doi:10.1016/j.foodchem.2008.07.077.
  • Kalač P. 2013. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric. 93(2):209–218. doi:10.1002/jsfa.5960.
  • Kaşık G, Nurullahoğlu ZU, Öztürk C, Öztürk R, Eroğlu G, Aktaş S, Özcan MM. 2020. Oil content and fatty acid compositions of some edible macrofungi. J Agroaliment Processes Technol. 26(3):217–222.
  • Kooch Y, Samadzadeh B, Hosseini SM. 2017. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA. 150:223–229. doi:10.1016/j.catena.2016.11.023.
  • Kumar H, Bhardwaj K, Kuča K, Sharifi-Rad J, Verma R, Machado M, Kumar D, Cruz-Martins N. 2022. Edible mushrooms’ enrichment in food and feed: a mini review. Int. J. Food Sci. 57(3):1386–1398. doi:10.1111/ijfs.15546.
  • Laessoe T, Petersen JH. 2019. Fungi of temperate Europe. Vol. 1, 2. Princeton: Princeton University Press. p. 1–1715.
  • Lai J, Zhu W, Zhang S, Zhang X, Lingfeng M. 2022. Glmm.Hp: an R package for computing individual effect of predictors in generalized linear mixed models. J Plant Ecol. 15(6):1302–1307. doi:10.1093/jpe/rtac096.
  • Lenth RV 2023. Emmeans: estimated marginal means, aka least-squares means. https://cran.r-project.org/web/packages/emmeans/index.html.
  • Lüdecke D. 2018. ggeffects: tidy data frames of marginal effects from regression models. J Open Source Software. 3(26):772. doi:10.21105/joss.00772.
  • Luginbuehl LH, Guillaume NM, Kurup S, Van Erp H, Radhakrishnan GR, Breakspear A, Oldroyd GED, Eastmond PJ. 2017. fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 356(6343):1175–1178. doi:10.1126/science.aan0081.
  • Mandeel QA, Al-Laith AA, Mohamed SA. 2005. Cultivation of oyster mushrooms (Pleurotus spp.) on various lignocellulosic wastes. World J Microbiol Biotechnol. 21(4):601–607. doi:10.1007/s11274-004-3494-4.
  • Monarrez-Gonzalez JC, Gonzalez-Elizondo MS, Marquez-Linares MA, Gutierrez-Yurrita PJ, Perez-Verdin G. 2020. Effect of forest management on tree diversity in temperate ecosystem forests in northern Mexico. PLoS One. 15(5):e0233292. doi:10.1371/journal.pone.0233292.
  • Nagy K, Tiuca ID. 2017. Importance of fatty acids in physiopathology of human body. In: Catala A, editor. In: Fatty Acids. IntechOpen: p. 2–21. doi:10.5772/67407.
  • Nakagawa S, Cuthill IC. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev. 82(4):591–605. doi:10.1111/j.1469-185X.2007.00027.x.
  • Niazi AR, Ghafoor A. 2021. Different ways to exploit mushrooms: a review. All Life. 14(1):450–460. doi:10.1080/26895293.2021.1919570.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos, et al. 2020. Vegan community ecology package version 2.5-7 November 2020.
  • Patil S, Ahmed S, Telang S, Mmv B. 2010. The nutritional value of pleurotus ostreatus (JACQ.:FR.) Kumm cultivated on different lignocellulosic agrowastes. Innov Rom Food Biotechnol. 7:66–76.
  • Pérez-Moreno J, Guerin-Laguette A, Rinaldi AC, Yu F, Verbeken A, Hernández-Santiago F, Martínez-Reyes M. 2021. Edible mycorrhizal fungi of the world: what is their role in forest sustainability, food security, biocultural conservation and climate change? Plants People Planet. 3:471–490. doi:10.1002/ppp3.10199.
  • Pfeffer PE, DD D, Bécard G, Shachar-Hill Y. 1999. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza1. Plant Physiology. 120(2):587–598. doi:10.1104/pp.120.2.587.
  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org/.
  • Ribeiro B, Guedes de Pinho P, Andrade PB, Baptista P, Valentão P. 2009. Fatty acid composition of wild edible mushrooms species: a comparative study. Microchem J. 93(1):29–35. doi:10.1016/j.microc.2009.04.005.
  • Robertson R, Guihéneuf F, Schmid M, Stengel D, Fitzgerald G, Ross P, Stanton C. 2013. Algae-derived polyunsaturated fatty acids. In: Catala A, editor. Polyunsaturated Fatty Acids: Sources, Antioxidant Properties and Health Benefits. Hauppauge, USA: Nova Sciences Publishers, Inc. p. 1–54.
  • Royse DJ, Baars J, Tan Q. 2017. Current overview of mushroom production in the world. In: Zied DC, Pardo-Gimenez A, editors. Edible and medicinal mushrooms. Blackwell Publishing, Wiley John & Sons Inc. p. 5–13. doi:10.1002/9781119149446.ch2.
  • RStudioTeam. 2022. RStudio: integrated development environment for R. Boston (MA): RStudio, PBC. http://www.rstudio.com/
  • Sande D, Pereira de Oliveira G, Fidelis E, Moura MA, de Almeida Martinsmartins B, Silva Lima MTN, Takahashi JA. 2019. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res Int. 125:108524. doi:10.1016/j.foodres.2019.108524.
  • Scherer-Lorenzen M, Schulze ED, Don A, Schumacher J, Weller E. 2007. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol Evol Syst. 9(2):53–70. doi:10.1016/j.ppees.2007.08.002.
  • Seyfried GS, Canham CD, Dalling JW, Yang WH. 2021. The effects of tree-mycorrhizal type on soil organic matter properties from neighborhood to watershed scales. Soil Biol Biochem. 161:108385. doi:10.1016/j.soilbio.2021.108385.
  • Sokoła-Wysoczańska E, Wysoczański T, Wagner J, Czyż K, Bodkowski R, Lochyński S, Patkowska-Sokoła B. 2018. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—a review. Nutrients. 10(10):1561. Article 10. doi:10.3390/nu10101561.
  • Stojek K, Gillerot L, Jaroszewicz B. 2022. Predictors of mushroom production in the European temperate mixed deciduous forest. For Ecol Manage. 522:120451. doi:10.1016/j.foreco.2022.120451.
  • Tajik S, Ayoubi S, Khajehali J, Shataee S. 2019. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arabian J Geosci. 12(11):368. doi:10.1007/s12517-019-4532-8.
  • Valverde ME, Hernández-Pérez T, Paredes-López O. 2015. Edible Mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015:e376387. doi:10.1155/2015/376387.
  • Veljović S, Krstić J. 2020. Elaborating on the potential for mushroom-based product market expansion: consumers’ attitudes and purchasing intentions. In: Singh J, Meshram V, Gupta M, editors. Bioactive natural products in drug discovery. Springer Nature Singapore. p. 643–663. doi: 10.1007/978-981-15-1394-7_23.
  • Verheyen K, Ceunen K, Ampoorter E, Baeten L, Bosman B, Branquart E, Carnol M, De Wandeler H, Grégoire JC, Lhoir P, et al. 2013. Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecol & Evol. 146(1):26–35. doi:10.5091/plecevo.2013.803.
  • Vidhyalakshmi R, Priya DL, Sumithira P. 2017. Influence of substrate in the nutritive value of oyster mushroom. Indian J Appl Microbiollied. 20(1):47–54. doi:10.46798/ijam.2017.v20i01.006.
  • Wasserstein RL, Lazar LA. 2016. The ASA statement on p-values: context, process, and purpose. Am Stat. 70(2):129–133. doi:10.1080/00031305.2016.1154108.
  • Yu XJ, Huang CY, Chen JL, Wang ZP, Chen JL, Li HJ, Liu XY, Wang ZP, Sun J, Wang ZP. 2019. High-throughput biochemical fingerprinting of oleaginous aurantiochytrium sp. strains by fourier transform infrared spectroscopy (FT-IR) for lipid and carbohydrate productions. Molecules. 24(8):1593. doi:10.3390/molecules24081593.
  • Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science. 368(6492):772–775. doi:10.1126/science.aba6880
  • Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, et al. 2022. Production, biosynthesis, and commercial applications of fatty acids from oleaginous fungi. Frontiers in Nutrition. 9:873657. doi:10.3389/fnut.2022.873657.