79
Views
0
CrossRef citations to date
0
Altmetric
Biochemistry & Physiology

Biochemical characterization of purified phytase produced from Aspergillus awamori AFE1 associated with the gastrointestinal tract of longhorn beetle (Cerambycidae latreille)

ORCID Icon, , , , , & show all
Pages 477-486 | Received 12 Apr 2023, Accepted 24 Apr 2024, Published online: 31 May 2024

LITERATURE CITED

  • Abd El-Hack M, Alagawany M, Arif M, Emam M, Saheed M, Arain MA, Siyal FA, Patra A, Elnesr SS, Khan RU. 2018. The uses of microbial phytase as a feed additive in poultry nutrition – a Review. Ann Anim Sci. 18:639–658. doi:10.2478/aoas-2018-0009.
  • Ajith S, Ghosh J, Shet DS, ShreeVidhya S, Punith BD, Elangovan AV. 2019. Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Express. 9:1–11. doi:10.1186/s13568-018-0725-x.
  • Apajalahti J, Vienola K. 2016. Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Sci Tech. 221:323–330. doi:10.1016/j.anifeedsci.2016.05.004.
  • Badejo OO, Olaniyi OO, Ayodeji AO, Lawal OT. 2021. Biochemical properties of partially purified surfactant-tolerant alkalophilic endo beta-1,4 xylanase and acidophilic beta-mannanase from bacteria resident in ruminants’ guts. Biocatal Agric Biotechnol. 34:101982. doi:10.1016/j.bcab.2021.101982.
  • Bhardwaj N, Kumar B, Verma P. 2019. A detailed overview of xylanases: an emerging biomolecule for current and future Prospective. Bioresour Bioprocess. 6:1–36.
  • Boukhris I, Farhat-Khemakhem A, Blibech M, Bouchaala K, Chouayekh H. 2015. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. Internat J Biol Macromole. 80:581–587. doi:10.1016/j.ijbiomac.2015.07.014.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3.
  • Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, RiveraOrduña FN. 2016. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: scolytinae). Fol Microbiol. 62:1–9. doi:10.1007/s12223-016-0469-4.
  • Castillo VG, Nacke A, Griese H, Tabernero L, Funkner LK, Daniel R. 2019. Characteristics of the first protein tyrosine phosphatase with phytase activity from a soil metagenome. Genes. 10. doi:10.3390/genes10020101.
  • Chen CC, Ko TP, Huang JW, Guo RT. 2015. Heat and alkaline-stable xylanases: application, protein structure and engineering. Chem BioEng Rev. 2:95–106.
  • Coban HB, Demirci A. 2014. Screening of phytase producers and optimization of culture conditions for submerged fermentation. Bioprocess Biosyst Eng. 37:609–616. doi:10.1007/s00449-013-1028-x.
  • Debbie J. 2018. 4-Step guide to pig feeding and rations. Farmers Weekly. https://www.fwi.co.uk/livestock/4-step-guide-pig-feeding-rations.
  • Demir Y, Dikbaş N, Beydemir S. 2018. Purification and Biochemical Characterization of Phytase Enzyme from Lactobacillus coryniformis (MH121153). Mole Biotech. 60:1–8.
  • Fasimoye FO, Olajuyigbe FM, Sanni MD. 2014. Purification and characterization of a thermostable extracellular phytase from Bacillus licheniformis PFBL-03. Prep Biochem Biotechnol. 44:193–205. doi:10.1080/10826068.2013.812565.
  • Fiske CH, Subbarow Y. 1925. The colorimetric determination of phosphorus. J Biol Chem. 66:376–400. doi:10.1016/S0021-9258(18)84756-1.
  • Gaind S, Singh S. 2015. Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int Biodeterior Biodegrad. 99:15–22. doi:10.1016/j.ibiod.2014.12.013.
  • Gontia-Mishra I, Deshmukh D, Tripathi N, Bardiya-Bhurat K, Tantwai K, Tiwari S. 2003. Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Brazilian J Microbiol. 44:317–323. doi:10.1590/S1517-83822013005000021.
  • Greiner R, Konietzny U. 2006. Phytase for Food Application. Food Technol Biotechnol. 44:125–140.
  • Gulati HK, Chadha BS, Saini HS. 2007. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol. 34:91–98. doi:10.1007/s10295-006-0171-7.
  • Jain U, Chauhan N. 2014. Bacillus cereus 10072 phytase - detection, purification, characterization and physiological role. Inter J Sci Res Dev. 2:14–19.
  • Jain J, Kumar A, Singh D, Singh B. 2018. Purification and kinetics of a protease resistant, neutral, and thermostable phytase from Bacillus subtilis subsp. subtilis JJBS250 ameliorating food nutrition. Prep Biochem Biotechnol. 17:1–7. doi:10.1080/10826068.2018.1487848.
  • Jatuwong K, Suwannarach N, KumLa J, Penkhrue W, Kakumyan P, Saisamorn LS. 2020. Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Front Microbiol. 11:188. doi:10.3389/fmicb.2020.00188.
  • Kalieva A, Saduyeva Z, Suleimenova Z, Mustafin K. 2017. Cell immobilization of Aspergillus Niger/7 for enhanced production of phytase. Eur J Biotech Biosci. 5:48–50.
  • Karmakar A, Bhattacharya S, Sengupta S, Ali N, Sakar SN, Karabi D, Datta SK. 2020. RNAi-Mediated silencing of ITPK gene reduces phytic acid content, alters transcripts of phytic acid biosynthetic genes, and modulates mineral distribution in rice seeds. Rice Sci. 27:315–328. doi:10.1016/j.rsci.2020.05.007.
  • Kim JC, Simmins PH, Mullan BP, Pluske JR. 2005. The effect of wheat phosphorus content and supplemental enzymes on digestibility and growth performance of weaner pigs. Anim Feed Sci Technol. 118:139–152. doi:10.1016/j.anifeedsci.2004.08.016.
  • Lamid M, Al-Arif A, Asmarani O, Warsito SH 2018. Characterization of phytase enzymes as feed additive for poultry and feed. IOP Conference Series: Earth and Environmental Science; Batu City, East Java, Indonesia. 137.
  • Lee HH, Loh SP, Bong CFJ, Sarbini SR, Yiu PH. 2015. Impact of PA on nutrient bio-accessibility and antioxidant properties of dehusked rice. J Food Sci Technol. 52:7806–7816. doi:10.1007/s13197-015-1918-9.
  • Lei XG, Porres JM. 2007. Phytase and inositol phosphates in animal nutrition: dietary manipulation and phosphorus excretion by animals. In: Turner BL, Richardson AE, Mullaney E, editors. Inositol phosphates. linking agriculture and the environment. India and South Asia: CABI Digital Library; p. 133–149.
  • Li X, Chi Z, Liu Z, Li J, Wang X, Hirimuthugoda NY. 2008. Purification and Characterization of extracellular phytase from a marine yeast Kodamaea ohmeri BG3. Mar Biotechnol (NY). 10:190–197. doi:10.1007/s10126-007-9051-z.
  • Martin JA, Murphy RA, Power RFG. 2003. Cloning and expression of fungal phytases in genetically modified strains of Aspergillus awamori. J Ind Microbiol Biotechnol. 30:568–576. doi:10.1007/s10295-003-0083-8.
  • Martin JA, Murphy RA, Power RFG. 2006. Purification and physico-chemical characterisation of genetically modified phytases expressed in Aspergillus awamori. Biores Tech. 97:1703–1708. doi:10.1016/j.biortech.2005.07.035.
  • Mohammadi F, Marti A, Nayebzadeh K, Hosseini SM, Tajdar-Oranj B, Jazaeri S. 2021. Effect of washing, soaking and pH in combination with ultrasound on enzymatic rancidity, phytic acid, heavy metals and coliforms of rice bran. Food Chem. 334:127–583. doi:10.1016/j.foodchem.2020.127583.
  • Monteiro PS, Guimarães VM, Melo RR, Rezende ST. 2015. Isolation of a thermostable acid phytase from Aspergillus Niger UFV-1 with strong proteolysis resistance. Braz J Microbiol. 46:251–260. doi:10.1590/S1517-838220120037.
  • Olopoda IA, Lawal OT, Omotoyinbo OV, Kolawole AN, Sanni DM. 2022. Biochemical characterization of a thermally stable, acidophilic and surfactant-tolerant xylanase from Aspergillus awamori AFE1 and hydrolytic efficiency of its immobilized form. Process Biochem. 121:45–55. doi:10.1016/j.procbio.2022.06.030.
  • Quartinello F, Kremser K, Schoen H, Tesei D, Ploszczanski L, Nagler M, Podmirseg SM, Insam H, Piñar G, Sterflingler K, et al. 2021. Together is better: the rumen microbial community as biological toolbox for degradation of synthetic polyesters. Front Bioengine Biotechnol. 9. doi:10.3389/fbioe.2021.68445.
  • Raboy V. 2020. Low phytic acid crops: observations based on four decades of research. Plants. 9:140. doi:10.3390/plants9020140.
  • Ranjan K, Sahay S. 2013. Identification of phytase producing yeast and optimization and characterization of extracellular phytase from Candida parapsilosis. Int J Sci Nat. 4:583–590.
  • Ravindran V. 2013. Poultry feed availability and nutrition in developing countries. Poult Dev Rev. 2(11):60–63.
  • Reddy CS, Achary VMM, Manna M, Singh J, Kaul T, Reddy MK. 2015. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33). Appl Biocem Biotechnol. 175(6):3058–3067. doi:10.1007/s12010-015-1487-4.
  • Rocky-Salimi K, Hashemi M, Safari M, Mousivand M. 2016. A novel phytase characterized by thermostability and high pH tolerance from rice phyllosphere isolated Bacillus subtilis BS 46. J Adv Res. 7(3):381–390. doi:10.1016/j.jare.2016.02.003.
  • Rose TJ, Welling MT, Julia CC, Jeong K, Tong C, Waters DLE, Liu L. 2020. Accumulation of phytate and starch lysophospholipids in rice grains and responses to alterations in P supply or source-sink relations. J Cereal Sci. 91:102–896. doi:10.1016/j.jcs.2019.102896.
  • Roy MP, Ghosh S 2014. Purification and characterization of phytase from two enteric bacteria isolated from cow dung. Proceedings of 5th Inter Confer Environ Aspects Bangladesh [ICEAB 2014]; Bangladesh. 57–59.
  • Sanni DM, Jimoh MB, Lawal OT, Bamidele SO. 2023. Purifiication and biochemical characterization of phytase from Bacillus cereus isolated from gastrointestinal tract of african giant snail (Achatina fulica). Int Microbiol. 26:961–972. doi:10.1007/s10123-023-00350-4.
  • Sanni DM, Lawal OT, Enujiugha VN. 2019. Purification and characterization of phytase from Aspergillus fumigatus isolated from african giant snail (Achatina fulica). Biocatal Agric Biotechnol. 17:1–30. doi:10.1016/j.bcab.2018.11.017.
  • Sato VS, Jorge JA, Guimarães LHS. 2016. Characterization of a thermotolerant phytase produced by Rhizopus microsporus var. microsporus biofilm on an inert support using sugarcane bagasse as carbon source. Appl Biochem Biotechnol. 179:610–624. doi:10.1007/s12010-016-2018-7.
  • Seguilha L, Lambrechts C, Boze H, Moulin G, Galzy P. 1992. Purification and properties of the phytase from Schanniomyces castellii. J Ferment Bioeng. 74:7–11. doi:10.1016/0922-338X(92)90259-W.
  • Selle H, Ravindran R. 2007. Microbial phytase in piggery nutrition. Animal Feed Sci Technol. 135:1–41. doi:10.1016/j.anifeedsci.2006.06.010.
  • Shetty JK, Paulson B, Pepsin M, Chotani G, Dean B, Hruby M. 2008. Phytase in fuel ethanol production offers economic and environmental benefits. Intl Sugar J. 110:160–174.
  • Silva VM, Boleta EHM, Martins JT, Dos Santos FLM, Silva ACR, Alcock TD, Wilson ME, Young SD, Broadley MR, White PJ, et al. 2019. Agronomic biofortification of cowpea with selenium: effects of selenate and selenite applications on selenium and phytate concentrations in seeds. J Sci Food Agric. 99:5969–5983. doi:10.1002/jsfa.9872.
  • Singh B, Satyanarayana T. 2009. Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol. 100:2046–2051. doi:10.1016/j.biortech.2008.10.025.
  • Suresh N, Das A. 2014. Molecular cloning of alkaline phosphatase, acid phosphatase and phytase genes from Aspergillus fumigatus for applications in biotechnological industries. J Pharm Sci Res. 6:5–10.
  • Troesch B, Egli I, Zeder C, Hurrell RF, De Pee S, Zimmermann MB. 2009. Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am J Clin Nutr. 89:539–544. doi:10.3945/ajcn.2008.27026.
  • Vats P, Bhattacharyya MS, Banerjee UC. 2005. Use of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combatting environmental pollution, A biological approach. Crit Rev Env Sci Technol. 35:469–486. doi:10.1080/10643380590966190.
  • Vijayaraghavan PR, Primiya R, Vincent SGP. 2013. Thermostable Alkaline Phytase from Alcaligenes sp. in improving bioavailability of phosphorus in Animal Feed: in Vitro Analysis. ISRN Biotechnol. 2013:1–6. doi:10.5402/2013/394305.
  • Wang Y, Gao X, Su Q, Wu W, An L. 2007. Expression of a heat stable phytase from Aspergillus fumigatus in tobacco (Nicotiana tabacum L. cv. NC89). Indian J Biochem Biophy. 44:26–30.
  • Zeng J, Gao X, Dai Z, Tang B, Tang XF. 2014. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site. Appl Environ Microbiol. 80:2763–2772. doi:10.1128/AEM.00006-14.
  • Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM. 2010. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour Technol. 101(11):4125–4131. doi:10.1016/j.biortech.2010.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.