284
Views
5
CrossRef citations to date
0
Altmetric
Research articles

Using multiple insecticidal microbial agents against diamondback moth larvae - does it increase toxicity?

, , , ORCID Icon, , , & show all
Pages 178-193 | Received 01 Nov 2018, Accepted 10 Feb 2019, Published online: 27 Feb 2019

References

  • Atef M, Sayed M, Behle RW. 2017. Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Sci Technol. 27:461–474. doi: 10.1080/09583157.2017.1303662
  • Cedergreen N. 2014. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE. 9(5):e96580. doi:10.1371/journal.pone.0096580.
  • de Oliveira EJ, Rabinovitch L, Monnerat RG, Passos L K, Zahner V. 2004. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol. 70:6657–6664. doi: 10.1128/AEM.70.11.6657-6664.2004
  • Furlong JM, Wright DJ, Dosdall LM. 2013. Diamondback moth ecology and management: problems, progress and prospects. Annu Rev Entomol. 58:517–541. doi: 10.1146/annurev-ento-120811-153605
  • Hernandez-Fernandez J. 2016. Bacillus thuringiensis: A natural tool in insect pest control. Handbook of Microbial Bioresourses. Gupta, V.K. et al (eds) CABI, UK, pp. 121–139.
  • Hurst MR, Becher SA, Young SD, Nelson TL, Glare TR. 2011a. Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. Int J Syst Evol Microbiol. 61:844–849. doi: 10.1099/ijs.0.024406-0
  • Hurst MRH, Jones SA, BinglinT HL, Jackson TA, Glare TR. 2011b. The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. J Bacteriol. 193:1966–1980. doi: 10.1128/JB.01044-10
  • Kepner J. 2004. Synergy: The big unknowns of pesticide exposure: daily combinations of pesticides and pharmaceuticals untested. Pesticides and You. Beyond Pesticides/National Coalition Against Misuse of Pesticides. 23:17–20.
  • Ma XM, Liu XX, Ning X, Zhang B, Han F, Guan XM, Tan YF, Zhang QW. 2008. Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). J Invertebr Pathol. 99:123–128. doi: 10.1016/j.jip.2008.06.014
  • Mantzoukas S, Milonas P, Kontodimas D, Angelopoulos K. 2013. Interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and two entomopathogenic fungi in bio-control of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Ann Microbiol. 63:1083–1091. doi: 10.1007/s13213-012-0565-x
  • Mascarin GM, Jackson MA, Kobori NN, Behle RW, Delalibera Júnior I. 2015. Liquid culture fermentation for rapid production of desiccation tolerant blastospores of Beauveria bassiana and isaria fumosorosea strains. J Invertebr Pathol. 127:11–20. doi: 10.1016/j.jip.2014.12.001
  • Mascarin GM, Jaronski ST. 2016. The production and uses of Beauveria bassiana as a microbial insecticide: Review. World J Microbiol Biotechnol. 32(177):1–26.
  • Mwamburi LA, Laing MD, Miller R. 2009. Interaction between Beauveria bassiana and Bacillus thuringiensis var. israelensis for the control of house fly larvae and adults in poultry houses. Poultry Sci. 88:2307–2314. doi: 10.3382/ps.2009-00212
  • Ortiz-Urquiza A, Keyhani NO. 2013. Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects. 4:357–374. doi: 10.3390/insects4030357
  • Roell KR, Reif DM, Motsinger-Reif AA. 2017. An introduction to terminology and methodology of chemical synergy—perspectives from across Disciplines. Front Pharmacol. 8:158. doi: 10.3389/fphar.2017.00158
  • Ruiu L. 2013. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects. 4:476–492. doi: 10.3390/insects4030476
  • Sayyed AH, Moores G, Crickmore N, Wright DJ. 2008. Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Pest Manag Sci. 64:813–819. doi: 10.1002/ps.1570
  • Talekar NS, Shelton A. 1993. Biology, ecology, and management of the diamondback moth. Annu Rev Entomol. 38:275–301. doi: 10.1146/annurev.en.38.010193.001423
  • Shelton Lab, Diamondback moth project at Cornell University. 2015. College of Agriculture and Life Sciences, Cornell University https://shelton.entomology.cornell.edu/2015/06/17/cornell-dbm-project-2015/ (accessed 7/9/2018 ).
  • Uma Devi K, Padmavathia J, Uma Maheswara Raob C, Khan AAP, Mohand MC. 2008. A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Sci Technol. 18:975–989. doi: 10.1080/09583150802450451
  • van Zijll de Jong E, Roush TL, Glare TR, Hampton JG. 2016. Discovery of two Brevibacillus laterosporus isolates from brassica with insecticidal properties against diamondback moth. Biocontrol Sci Technol. 26:426–431. doi: 10.1080/09583157.2015.1118437
  • Vandenberg JD, Shelton AM, Wilsey WT, Ramos M. 1998. Assessment of Beauveria bassiana sprays for control of diamondback moth (Lepidoptera: Plutellidae) on crucifers. J Econ Entom. 91:624–630. doi: 10.1093/jee/91.3.624
  • Wang Z, Sun L, Zhang J, Cao C. 2014. Preparation and insecticidal efficacy of wettable powder formulations of Bacillus thuringiensi and Beauveria bassiana. J Beijing For U. 3:34–41. (Abstract ).
  • Wraight SP, Ramos ME. 2005. Synergistic interaction between Beauveria bassiana- and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae. J Invertebr Pathol. 90:139–150. doi: 10.1016/j.jip.2005.09.005
  • Xu X, Robinson J, Jeger M, Jeffries P. 2010. Using combinations of biocontrol agents to control Botrytis cinerea on strawberry leaves under fluctuating temperatures. Biocontrol Sci Technol. 20:359–373. doi: 10.1080/09583150903528114
  • Zeigler DR. 2001. The Genus Geobacillus. Introduction and Strain Catalog. Bacillus Genetic Stock Center Catalog of Strains 7th Edition, Volume 3.
  • Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU. 1997. Cloning and analysis of the first cry gene from Bacillus popilliae. J Bacteriol. 179:4336–4341. doi: 10.1128/JB.179.13.4336-4341.1997

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.