477
Views
2
CrossRef citations to date
0
Altmetric
Review article

Resolving broad patterns of prokaryotic community structure in New Zealand pasture soils

, ORCID Icon, , &
Pages 143-161 | Received 11 Apr 2019, Accepted 07 Oct 2019, Published online: 17 Oct 2019

References

  • Adair KL, Wratten S, Lear G. 2013. Soil phosphorous depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial. Environ Microbiol Rep. 5(3):404–413. doi: 10.1111/1758-2229.12049
  • Adams MWW, Perler FB, Kelly RM. 1995. Extremozymes: expanding the limits of biocatalysis. Nat Biotechnol. 13(7):662–668. doi: 10.1038/nbt0795-662
  • Allison SD, Martiny JBH. 2008. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 105(Suppl. 1):11512–11519. doi: 10.1073/pnas.0801925105
  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR. 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorous. Pedobiologia. 54(5–6):309–320. doi: 10.1016/j.pedobi.2011.07.005
  • Anderson CR, Hamonts K, Clough TJ, Condron LM. 2014. Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. Agric Ecosyst Environ. 191:63–72. doi: 10.1016/j.agee.2014.02.021
  • Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature. 515(7528):505–511. doi: 10.1038/nature13855
  • Barkle GF, Stenger R, Singleton PL, Painter DJ. 2000. Effect of regular irrigation with dairy farm effluent on soil organic matter and soil microbial biomass. Aus J Soil Res. 38(6):1087–1097. doi: 10.1071/SR99127
  • Bhandral R, Saggar S, Bolan NS, Hedley MJ. 2007. Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction. Soil Tillage Res. 94(2):482–492. doi: 10.1016/j.still.2006.10.006
  • Bossio DA, Scow KM, Gunapala N, Graham KJ. 1998. Determinants of soil microbial communities: effects of agricultural management, season and soil type on phospholipid fatty acid profiles. Microb Ecol. 36(1):1–12. doi: 10.1007/s002489900087
  • Cameron KC, Di HJ, McLaren RG. 1997. Is soil an appropriate dumping ground for out wastes? Soil Res. 35(5):995–1035. doi: 10.1071/S96099
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7(5):335. doi: 10.1038/nmeth.f.303
  • Choudhary MA, Akramkhanov A, Saggar S. 2002. Nitrous oxide emissions from a New Zealand cropped soil: tillage effects, spatial and seasonal variability. Agric Ecosyst Environ. 93(1-3):33–43. doi: 10.1016/S0167-8809(02)00005-1
  • Chua JPS, Orlovich DA, Summerfield TC. 2014. Cyanobacteria in New Zealand indigenous grasslands. New Zeal J Bot. 52(1):100–115. doi: 10.1080/0028825X.2013.862554
  • Clough TJ, Condron LM, Kammann C, Müller C. 2013. A review of biochar and soil nitrogen dynamics. Agronomy. 3(2):275–293. doi: 10.3390/agronomy3020275
  • Clough TJ, Kelliher FM, Sherlock RR, Ford CD. 2004. Lime and soil moisture effects on nitrous oxide emissions from a urine patch. Soil Sci Soc Am J. 68(5):1600–1609. doi: 10.2136/sssaj2004.1600
  • Clough TJ, Ledgard SF, Sprosen MS, Kear MJ. 1998. Fate of 15N labelled urine on four soil types. Plant Soil. 199(2):195–203. doi: 10.1023/A:1004361009708
  • Condron LM, Hopkins DW, Gregorich EG, Black A, Wakelin SA. 2014. Long-term irrigation effects on soil organic matter under temperate grazed pasture. Eur J Soil Sci. 65(5):741–750. doi: 10.1111/ejss.12164
  • Dai Y, Di HJ, Cameron KC, He J-Z. 2013. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on methanotroph abundance and methane uptake in a grazed pasture soil. Environ Sci Pollut Res. 20(12):8680–8689. doi: 10.1007/s11356-013-1825-4
  • Davinic M, Fultz LM, Acosta-Martinez V, Calderon FJ, Cox SB, Dowd SE, Allen VG, Zak JC, Moore-Kucera J. 2012. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biol Biochem. 46:63–72. doi: 10.1016/j.soilbio.2011.11.012
  • Di HJ, Cameron KC, Moore S, Smith NP. 1998. Nitrate leaching and pasture yields following the application of dairy shed effluent or ammonium fertilizer under spray or flood irrigation: results of a lysimeter study. Soil Use Manage. 14(4):209–214. doi: 10.1111/j.1475-2743.1998.tb00152.x
  • Di HJ, Cameron KC, Podolyan A, Robinson A. 2014. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol Biochem. 73:59–68. doi: 10.1016/j.soilbio.2014.02.011
  • Di HJ, Cameron KC, Sherlock RR. 2007. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use Manage. 23(1):1–9. doi: 10.1111/j.1475-2743.2006.00057.x
  • Drewry JJ, Lowe JAH, Paton RJ. 1999. Effect of sheep stocking intensity on soil physical properties and dry matter production on a Pallic soil in Southland. New Zeal J Agr Res. 42(4):493–499. doi: 10.1080/00288233.1999.9513399
  • FAO. 2004. The ethics of sustainable agriculture intensification. FAO ethics series 3. http://www.fao.org/3/j0902e/j0902e00.htm.
  • Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 103(3):626–631. doi: 10.1073/pnas.0507535103
  • Forester NT, Lane GA, Steringa M, Lamont IL, Johnson LJ. 2018. Contrasting roles of fungal siderophores in maintaining iron homeostasis in Epichloë festucae. Fungal Genet Biol. 111: 60-72. doi: 10.1016/j.fgb.2017.11.003
  • Griffith JC, Lee WG, Orlovich D, Summerfield TC. 2017. Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand. PloS one. 12(6):e0179652. doi: 10.1371/journal.pone.0179652
  • Guo YJ, Di HJ, Cameron KC, Bowen L. 2014. Effect of application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate, and ammonia-oxidizing bacteira and archaea growth in a grazed pasture soil: an incubation study. J Soils Sediments. 14(5):897–903. doi: 10.1007/s11368-013-0843-7
  • Hamonts K, Balaine N, Moltchanova E, Beare M, Thomas S, Wakelin SA, O’Callaghan M, Condron LM, Clough TJ. 2013. Influence of soil bulk density and matric potential on microbial dynamics, inorganic N transformations, N2O and N2 fluxes following urea deposition. Soil Biol Biochem. 65:1–11. doi: 10.1016/j.soilbio.2013.05.006
  • Hamonts K, Clough TJ, Stewart A, Clinton PW, Richardson AE, Wakelin SA, O’Callaghan M, Condron LM. 2013. Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiol Ecol. 83:568–584. doi: 10.1111/1574-6941.12015
  • Haynes RJ, Naidu R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and physical conditions: a review. Nutr Cycl Agroecosys. 51(2):123–137. doi: 10.1023/A:1009738307837
  • Haynes RJ, Swift RS. 1988. Effects of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in an acid soil. Biol Fert Soils. 6(2):153–158. doi: 10.1007/BF00257666
  • Haynes RJ, Williams PH. 1992. An overview of pasture response, nutrient turnover and nutrient accumulation on the grazed, long term superphosphate trial at Winchmore, New Zealand. Proc XVII Inter Grassl Congr, Hamilton.
  • Haynes RJ, Williams PH. 1993. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron. 49:119–199. doi: 10.1016/S0065-2113(08)60794-4
  • Haynes RJ, Williams PH. 1999. Influence of stock camping behaviour on the soil microbiological and biochemical properties of grazed pastoral soils. Biol Fert Soils. 28(3):253–258. doi: 10.1007/s003740050490
  • Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G. 2017. Bacteria as emerging indicators of soils condition. Appl Environ Microbiol. 83(1):e02826–16. doi: 10.1128/AEM.02826-16
  • Hornung M. 1985. Acidification of soils by trees and forests. Soil Use Manage. 1(1):24–27. doi: 10.1111/j.1475-2743.1985.tb00648.x
  • Houlbrooke DJ, Paton RJ, Littlejohn RP, Morton JD. 2011. Land-use intensification in New Zealand: effects on soil properties and pasture production. J Agric Sci. 149(3):337–349. doi: 10.1017/S0021859610000821
  • Huang Y-T, Lowe DJ, Zhang H, Cursons R, Young JM, Churchman GJ, Schipper LA, Rawlence NK, Wood JR, Cooper A. 2016. A new method to extract and purify DNA from allophanic soils and paleosols, and potential for paleoenvironmental reconstruction and other applications. Geoderma. 274:114–125. doi: 10.1016/j.geoderma.2016.04.003
  • Insam H, Domsch KH. 1988. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol. 15(2):177–188. doi: 10.1007/BF02011711
  • Jenkinson DS, Davidson SA, Powlson DS. 1979. Adenosine triphosphate and microbial biomass in soil. Soil Biol Biochem. 11(5):521–527. doi: 10.1016/0038-0717(79)90012-9
  • Jensen LS, McQueen DJ, Ross DJ, Tate KR. 1996. Effects of soil compaction on N-mineralization and microbial-C and –N. II. laboratory simulation. Soil Tillage Res. 38(3-4):189–202. doi: 10.1016/S0167-1987(96)01034-3
  • Jha N, Palmada T, Berben P, Saggar S, Luo J, McMillan AMS. 2016. Lime enhances denitrification rate and denitrifier gene abundance in pasture soils treated with urine and urine + DCD. In: Integrated nutrient and water management for sustainable farming.
  • Johnston PR. 2010. Causes and consequences of changes to New Zealand’s fungal biota. N Z J Ecol. 34(1):175–184.
  • Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schoning I, Schrumpf M, Daniel R. 2016. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep. 6:33696. doi: 10.1038/srep33696
  • Kaminsky R, Morales SE. 2018. Conditionally rare taxa contribute but do not account for changes in soil prokaryotic community structure. Front Microbiol. 9:809. doi: 10.3389/fmicb.2018.00809
  • Kaminsky R, Trouche B, Morales S E. 2017. Soil classification predicts differences in prokaryotic communities across a range of geographically distant soils once pH is accounted for. SCI Rep. 7:45369. doi: 10.1038/srep45369
  • Kemp P, Lopez I. 2016. Hill country pastures in the southern North Island of New Zealand: an overview. Hill Country Symposium. Grassland Research and Practice.
  • Khan S, Clough TJ, Goh KM, Sherlock RR. 2011. Influence of soil pH on NOx and N2O emissions from bovine urine applied to soil columns. New Zeal J Agr Res. 54(4):285–301. doi: 10.1080/00288233.2011.607831
  • Lambers H, Mougel C, Jaillard B, Hinsinger P. 2009. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 321(1-2):83–115. doi: 10.1007/s11104-009-0042-x
  • Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 75(15):5111–5120. doi: 10.1128/AEM.00335-09
  • Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N. 2013. Temporal variability in soil microbial communities across land-use types. ISME J. 7(8):1641–1650. doi: 10.1038/ismej.2013.50
  • Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem. 40(9):2407–2415. doi: 10.1016/j.soilbio.2008.05.021
  • Lehmann J. 2007. A handful of carbon. Nature. 447(7141):143–144. doi: 10.1038/447143a
  • Lipson DA. 2007. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol. 59(2):418–427. doi: 10.1111/j.1574-6941.2006.00240.x
  • Lloyd-Jones G, Hunter DWF. 2001. Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils. Soil Biol Biochem. 33(15):2053–2059. doi: 10.1016/S0038-0717(01)00133-X
  • Mackay AD. 2008. Impacts of intensification of pastoral agriculture on soils: current and emerging challenges and implications for future land uses. N Z Vet J. 56(6):281–288. doi: 10.1080/00480169.2008.36848
  • MacLeod CJ, Moller H. 2006. Intensification and diversification of New Zealand agriculture since 1960: An evaluation of current indicators of land use change. Agric Ecosyst Environ. 115(1-4):201–218. doi: 10.1016/j.agee.2006.01.003
  • Mander C, Wakelin S, Young S, Condron L, O’Callaghan M. 2012. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorous status in grassland soils. Soil Biol Biochem. 44(1):93–101. doi: 10.1016/j.soilbio.2011.09.009
  • Mark AF. 1994. Effects of burning and grazing on sustainable utilisation of upland snow tussock (Chionochloa spp) rangelands for pastoralism in South Island, New Zealand. Aus J Bot. 42(2):149–161. doi: 10.1071/BT9940149
  • McIntosh PD, Gibson RS, Saggar S, Yeates GW, McGimpsey P. 1999. Effect of contrasting farm management on vegetation and biochemical, chemical and biological condition of moist steepland soils of the South Island high country, New Zealand. Aus J Soil Res. 37(5):847–866. doi: 10.1071/SR98086
  • McIntosh PD, Ogle GI, Patterson RG, Aubrey B, Morriss J, Giddens K. 1996. Changes of surface soil nutrients and sustainability of pastoralism on grazed hilly and steep land, South Island, New Zealand. J Range Manage. 49(4):361–367. doi: 10.2307/4002598
  • McMurdie PJ, Holmes S. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS one. 8(4):e61217. doi: 10.1371/journal.pone.0061217
  • McMurdie PJ, Holmes S. 2014. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 10(4):e1003531. doi: 10.1371/journal.pcbi.1003531
  • Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: synthesis. Washington, DC: Island Press.
  • Morales SE, Jha N, Saggar S. 2015a. Biogeography and biophysicochemical traits link N2O emissions, N2O emission potential and microbial communities across New Zealand pasture soils. Soil Biol Biochem. 82:87–98. doi: 10.1016/j.soilbio.2014.12.018
  • Morales SE, Jha N, Saggar S. 2015b. Impact of urine and the application of the nitrification inhibitor DCD on microbial communities in dairy-grazed pasture soils. Soil Biol Biochem. 88:344–353. doi: 10.1016/j.soilbio.2015.06.009
  • Mullen GJ, Jelley RM, McAleese DM. 1974. Effects of animal treading on soil properties and pasture production. Irish J Agr Res. 13(2):171–180.
  • Naeem S, Li S. 1997. Biodiversity enhances ecosystem reliability. Nature. 390(6659):507–509. doi: 10.1038/37348
  • O’Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N. 2010. Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem. 42(9):1425–1436. doi: 10.1016/j.soilbio.2010.05.003
  • O’Connor KF. 1983. Nitrogen balances in natural grasslands and extensively-managed grassland systems. N Z J Ecol. 6:1–18.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos, et al. 2018. Vegan: Community Ecology Package. R package version 2.3-3. http://CRAN.R-project.org/package=vegan.
  • Orwin KH, Bertram JE, Clough TJ, Condron LM, Sherlock RR, O’Callaghan M, Ray J, Baird DB. 2010. Impact of bovine urine deposition on soil microbial activity, biomass and community structure. Appl Soil Ecol. 44(1):89–100. doi: 10.1016/j.apsoil.2009.10.004
  • Orwin KH, Dickie IA, Wood JR, Bonner KI, Holdaway RJ. 2016. Soil microbial community structure explains the resistance of respiration to a dry-rewet cycle, but not soil functioning under static conditions. Funct Ecol. 30(8):1430–1439. doi: 10.1111/1365-2435.12610
  • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett. 14(5):493–502. doi: 10.1111/j.1461-0248.2011.01611.x
  • Orwin KH, Stevenson BA, Smaill SJ, Kirschbaum MUF, Dickie IA, Clothier BE, Garrett LG, van der Weerden TJ, Beare MH, Curtin D. 2015. Effects of climate change on the delivery of soil-mediated ecosystem services within the primary sector in temperate ecosystems: a review and New Zealand case study. Glob Change Biol. 21(8):2844–2860. doi: 10.1111/gcb.12949
  • Orwin KH, Wardle DA. 2005. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant Soil. 278(1–2):205–221. doi: 10.1007/s11104-005-8424-1
  • Powell C. 1976. Mycorrhizal fungi stimulate clover growth in New Zealand hill country soils. Nature. 264(5585):436–438. doi: 10.1038/264436a0
  • Powlson DS, Brookes PC, Jenkinson DS. 1987. Measurement of soil microbial biomass provides early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem. 19(2):159–164. doi: 10.1016/0038-0717(87)90076-9
  • Qiu W, Di HJ, Cameron KC, Hu C. 2010. Nitrous oxide emissions from animal urine as affected by season and a nitrification inhibitor dicyandiamide. J Soils Sediments. 10(7):1229–1235. doi: 10.1007/s11368-010-0242-2
  • Quast C, Preusse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web- based tools. Nucleic Acids Res. 41(D1):D590–D596. doi: 10.1093/nar/gks1219
  • R Development Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2008).
  • Robinson A, Di HJ, Cameron KC, Podolyan A. 2014b. Effect of soil aggregate size and DCD on N2O emissions in a grazed pasture soil. Soil Use Manage. 30(2):231–240.
  • Robinson A, Di DJ, Cameron KC, Podolyan A, He J. 2014a. The effect of soil pH and dicyandiamide (DCD) on N2O emissions and ammonia oxidiser abundance in grazed pasture soil. J Soils Sediments. 14(8):1434–1444. doi: 10.1007/s11368-014-0888-2
  • Ross DJ, Orchard VA, Rhoades DA. 1984. Temporal fluctuations in biochemical properties of soil under pasture. I. Respiratory activity and microbial biomass. Aus J Soil Res. 22(3):303–317.
  • Ross DJ, Speir TW, Tate KR, Feltham CW. 1997. Burning in a New Zealand snow-tussock grassland: effects on soil microbial biomass and nitrogen and phosphorous availability. N Z J Ecol. 21(1):63–71.
  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JC, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4(10):1340–1351. doi: 10.1038/ismej.2010.58
  • RStudio. 2018. RStudio: Integrated Development Environment for R (version 1.1.423). RStudio, Boston, MA, USA.
  • Rutledge S, Mudge PL, Campbell DI, Woodward SL, Goodrich JP, Wall AM, Kirschbaum MUF, Schipper LA. 2015. Carbon balance of an intensively grazed temperate dairy pasture over four years. Agric Ecosyst Environ. 206:10–20. doi: 10.1016/j.agee.2015.03.011
  • Saggar S, Andrew RM, Tate KR, Hedley CB, Rodda NJ, Townsend JA. 2004. Modelling nitrous oxide emissions from dairy-grazed pastures. Nutr Cycl Agroecosyst. 68(3):243–255. doi: 10.1023/B:FRES.0000019463.92440.a3
  • Saggar S, McIntosh PD, Hedley CB, Knicker H. 1999. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.). Biol Fertil Soils. 30(3):232–238. doi: 10.1007/s003740050613
  • Samad MS, Bakken LR, Nadeem S, Clough TJ, de Klein CAM, Richards KG, Lanigan GJ, Morales SE. 2016a. High-resolution denitrification kinetics in pasture soils link N2O emissions to pH, and denitrification to C mineralization. PloS one. 11(3):e0151713. doi: 10.1371/journal.pone.0151713
  • Samad MS, Biswas A, Bakken LR, Clough TJ, de Klein CAM, Richards KG, Lanigan GJ, Morales SE. 2016b. Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci Rep. 6:35990. doi: 10.1038/srep35990
  • Samad MS, Johns C, Richards KG, Lanigan GJ, de Klein CAM, Clough TJ, Morales SE. 2017. Response to nitrogen addition reveals metabolic and ecological strategies of soil bacteria. Molec Ecol. 26(20):5500–5551. doi: 10.1111/mec.14275
  • Sarathchandra SU, Ghani A, Yeates GW, Burch G, Cox NR. 2001. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol Biochem. 33(7–8):953–964. doi: 10.1016/S0038-0717(00)00245-5
  • Sarathchandra SU, Perrott KW, Upsdell MP. 1984. Microbiological and biochemical characteristics of a range of New Zealand soils under established pasture. Soil Biol Biochem. 16(2):177–183. doi: 10.1016/0038-0717(84)90109-3
  • Schipper LA, Baisden WT, Parfitt RL, Ross C, Cladyon JJ, Arnold G. 2007. Large losses of C and N from soil profiles under pasture in New Zealand during the past 20 years. Global Change Biol. 13(6):1138–1144. doi: 10.1111/j.1365-2486.2007.01366.x
  • Schipper LA, Mudge P, Kirschbaum MUF, Hedley CB, Golubiewski NE, Smaill SJ, Kelliher FM. 2017. A review of soil carbon change in New Zealand’s grazed grasslands. New Zeal J Agr Res. 60(2):93–118. doi: 10.1080/00288233.2017.1284134
  • Schipper LA, Parfitt RL, Ross C, Baisden WT, Claydon JJ, Fraser S. 2010. Gains and losses in C and N stocks on New Zealand pasture soils depend on land use. Agric Ecosyst Environ. 139(4):611–617. doi: 10.1016/j.agee.2010.10.005
  • Shade A. 2017. Diversity is the question, not the answer. ISME J. 11(1):1–6. doi: 10.1038/ismej.2016.118
  • Shanafelt DW, Dieckmann U, Jonas M, Franklin O, Loreau M, Perrings C. 2015. Biodiversity, productivity, and the spatial insurance hypothesis revisited. J Theor Biol. 380:426–435. doi: 10.1016/j.jtbi.2015.06.017
  • Simoes A. 2015. The observatory of economic complexity. http://atlas.media.mit.edu/.
  • Singleton PL, Boyes M, Addison B. 2000. Effect of treading by dairy cattle on topsoil physical conditions for six contrasting soil types in Waikato and Northland, New Zealand, with implications for monitoring. N Z J Agr Res. 43(4):559–567. doi: 10.1080/00288233.2000.9513453
  • Sparling G, Ross D, Trustrum N, Arnold G, West A, Speir T, Schipper L. 2003. Recovery of topsoil characteristics after landslip erosion in dry hill country of New Zealand, and a test of the space-for-time hypothesis. Soil Biol Biochem. 35(12):1575–1586. doi: 10.1016/j.soilbio.2003.08.002
  • Sparling G, Schipper L. 2004. Soil quality monitoring in New Zealand: trends and issues arising from a broad-scale survey. Agric Ecosyst Environ. 104(3):545–552. doi: 10.1016/j.agee.2003.11.014
  • Stevens RJ, Laughlin RJ, Malone JP. 1998. Soil pH affects the process reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem. 30(8-9):1119–1126. doi: 10.1016/S0038-0717(97)00227-7
  • Stevenson BA, Sarmah AK, Smernik R, Hunter DWF, Fraser S. 2016. Soil carbon characterization and nutrient ratios across land uses on two contrasting soils: their relationships to microbial biomass and function. Soil Biol Biochem. 97:50–62. doi: 10.1016/j.soilbio.2016.02.009
  • Stevenson BA, Sparling GP, Schipper LA, Degens BP, Duncan LC. 2004. Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biol Biochem. 36(1):49–55. doi: 10.1016/j.soilbio.2003.08.018
  • Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR, Craigie RA. 2011. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual. 40(2):468–476. doi: 10.2134/jeq2010.0419
  • Treweek G, Di HJ, Cameron KC, Podolyan A. 2016. Simulated animal trampling of a free-draining stony soil stimulated denitrifier growth and increased nitrous oxide emissions. Soil Use Manage. 32(3):455–464. doi: 10.1111/sum.12281
  • Trustrum NA, DeRose RC. 1988. Soil depth-age relationship of landslides on deforested hillslopes. Taranaki. Geomorphology. 1(2):143–160. doi: 10.1016/0169-555X(88)90012-8
  • Wakelin SA, Barratt BIP, Gerard E, Gregg AL, Brodie EL, Andersen GL, De Santis TZ, Zhou J, He Z, Kowalchuk GA, O’Callaghan M. 2013a. Shifts in the phylogenetic structure and functional capacity of soil microbial communities follow alteration of native tussock grassland ecosystems. Soil Biol Biochem. 57:675–682. doi: 10.1016/j.soilbio.2012.07.003
  • Wakelin SA, Clough TJ, Gerard EM, O’Callaghan M. 2013b. Impact of short-interval, repeat application of dicyandiamide on soil N transformation in urine patches. Agric Ecosys Environ. 167(4):60–70. doi: 10.1016/j.agee.2013.01.007
  • Wakelin SA, Condron LM, Gerard E, Dignam BEA, Black A, O’Callaghan M. 2017. Long-term P fertilisation of pasture soil did not increase soil organic matter stocks but increased microbial biomass and activity. Biol Fert Soil. 53(5):511–521. doi: 10.1007/s00374-017-1212-2
  • Wakelin SA, Macdonald LM, O’Callaghan M, Forrester ST, Condron L. 2014. Soil functional resistance and stability are linked to different ecosystem properties. Austral Ecol. 39(5):522–531. doi: 10.1111/aec.12112
  • Wakelin S, Mander C, Gerard E, Jansa J, Erb A, Young S, Condron L, O’Callaghan M. 2012. Response of soil microbial communities to contrasted histories of phosphorous fertilisation in pastures. Appl Soil Ecol. 61:40–48. doi: 10.1016/j.apsoil.2012.06.002
  • Wakelin SA, van Koten C, O’Callaghan M, Brown M. 2013c. Physicochemical properties of 50 New Zealand pasture soils: a starting point for assessing and managing soil microbial resources. New Zeal J Agr Res. 56(4):248–260. doi: 10.1080/00288233.2013.822003
  • Wall DH, Six J. 2015. Give soils their due. Science. 347(6223):695. doi: 10.1126/science.aaa8493
  • Wardle DA. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc. 67:321–358. doi: 10.1111/j.1469-185X.1992.tb00728.x
  • Wardle DA. 1998. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol Biochem. 30(13):1627–1637. doi: 10.1016/S0038-0717(97)00201-0
  • Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, et al. 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 5(1):27. doi: 10.1186/s40168-017-0237-y
  • West AW, Sparling GP, Feltham CW, Reynolds J. 1992. Microbial activity and survival in soils dried at different rates. Aus J Soil Res. 30(2):209–222. doi: 10.1071/SR9920209
  • Wickham H. 2016. Ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nat Commun. 1:1. doi: 10.1038/ncomms1053
  • Wu Y, Ma B, Zhou L, Wang H, Xu J, Kemmitt S, Brookes PC. 2009. Changes in soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl Soil Ecol. 43(2-3):234–240. doi: 10.1016/j.apsoil.2009.08.002
  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FA, Clark IM, McGrath SP, Hirsch SP, Triplett EW. 2015. Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol. 69(2):395–406. doi: 10.1007/s00248-014-0530-2
  • Zhang NL, Xia JY, Yu XJ, Ma KP, Wan SQ. 2011. Soil microbial community changes and their linkages with ecosystem carbon exchange under asymmetrically diurnal warming. Soil Biol Biochem. 43(10):2053–2059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.