584
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Development of a national-scale framework to characterise transfers of N, P and Escherichia coli from land to water

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 286-313 | Received 14 Aug 2019, Accepted 07 Jan 2020, Published online: 29 Jan 2020

References

  • Arheimer B, Dahné J, Donnelly C. 2012. Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan. Ambio. 41:600–612. doi: 10.1007/s13280-012-0323-0
  • Arnold J, Srinivasan R, Muttiah R, Williams J. 1998. Large area hydrologic modelling and assessment Part 1. Model development. Journal of the American Water Resources Association. 34:73–89. doi: 10.1111/j.1752-1688.1998.tb05961.x
  • Basher LR. 2013. Erosion processes and their control in New Zealand. In: Dymond JR, editor. Ecosystem services in New Zealand – conditions and trends. Lincoln: Manaaki Whenua Press; p. 363–374.
  • Beven K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources. 16:41–51. doi: 10.1016/0309-1708(93)90028-E
  • Beven K, Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology. doi:10.1016/S0022-1694(01)00421-8.
  • BLNZ (Beef & Lamb New Zealand). 2018. Compendium of New Zealand farm facts. 42nd edition; [accessed 31 July 2019]. https://beeflambnz.com/knowledge-hub/PDF/compendium-farm-facts.
  • Blöschl G, Sivapalan M, Wagner T, Viglione A, Savenue H, editors. 2013. Runoff predictions in ungauged basins – synthesis across processes, places and scales. Cambridge, UK: Cambridge University Press.
  • Burbery L. 2018. Nitrate reactivity in groundwater: a brief review of the science, practical methods of assessment, and collation of results from New Zealand field investigations. Journal of Hydrology (NZ). 57:51–79.
  • Castillo CR, Güneralp I, Güneralp B. 2014. Influence of changes in developed land and precipitation on hydrology of a coastal Texas watershed. Applied Geography. 47:154–167. doi: 10.1016/j.apgeog.2013.12.009
  • Cerdan O, Le Bissonnais Y, Govers G, Lecomte V, van Oosta K, Couturier A, King C, Dubreui N. 2004. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. Journal of Hydrology. doi:10.1016/j.jhydrol.2004.02.017.
  • Cho KH, Pachepsky YA, Park Y, Oliver DM, Muirhead RW, Quilliam RA, Shelton D. 2016. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: state of the science and future opportunities. Water Research. 100:38–56. doi: 10.1016/j.watres.2016.04.064
  • Clague JC, Stenger R, Morgenstern U. 2019. The influence of unsaturated zone drainage status on denitrification and the redox succession in shallow groundwater. Science of the Total Environment. doi:10.1016/j.scitotenv.2018.12.383.
  • Cliflo 2018. The national climate database [accessed 14 June 2019]. http://cliflo.niwa.co.nz/.
  • Close ME, Abraham P, Humphries B, Lilburne L, Cuthill T, Wilson S. 2016. Predicting groundwater redox status on a regional scale using linear discriminant analysis. Journal of Contaminant Hydrology. doi:10.1016/j.jconhyd.2016.04.006.
  • Collins S, Singh R, Rivas A, Palmer A, Horne D, Manderson A, Roygard J, Matthews A. 2017. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand. Journal of Contaminant Hydrology. doi:10.1016/j.jconhyd.2017.10.002.
  • Croke BF, Jakeman AJ. 2001. Predictions in catchment hydrology: an Australian perspective. Marine and Freshwater Research. 52:65–79. doi: 10.1071/MF00045
  • Donigian AS Jr, Imhoff JR, Bickens BR, Kittle JL Jr. 1984. Application guide for the Hydrological Simulation Program FORTRAN HSPF, Environmental Resources Laboratory, US EPA-600/3-84-065, US EPA, Athens, Georgia, United States.
  • Donnelly C, Andersson JCM, Arheimer B. 2014. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal. doi:10.1080/02626667.2015.1027710.
  • Drewry JJ. 2018. Nitrogen and phosphorus loss values for selected land uses. Contract Report: LC3367. Manaaki Whenua – Landcare Research. Lincoln. 39 p.
  • Drewry JJ, Newham LTH, Greene RSB, Jakeman AJ, Croke BFW. 2006. A review of nitrogen and phosphorus export to waterways: context for catchment modelling. Marine and Freshwater Research. 57(8):757–774. doi: 10.1071/MF05166
  • Dwivedi D, Mohanty BP, Lesikar BJ. 2016. Impact of the linked surface water-soil water-groundwater system on transport of E. coli in the subsurface. Water, Air, & Soil Pollution. doi:10.1007/s11270-016-3053-2.
  • Dymond JR, Serezat D, Ausseil A-GE, Muirhead RW. 2016. Mapping of Escherichia coli sources connected to waterways in the Ruamahanga catchment, New Zealand. Environmental Science and Technology. 50:1897–1905. doi: 10.1021/acs.est.5b05167
  • Elliott AH, Semadeni-Davies AF, Shankar U, Zeldis JR, Wheeler DM, Plew DR, Rys GJ, Harris SR. 2016. A national-scale GIS-based system for modelling impacts of land use on water quality. Environmental Modelling & Software. 86:131–144. doi: 10.1016/j.envsoft.2016.09.011
  • Falkenmark, M, Chapman, T, editors. 1989. Comparative hydrology. Paris: UNESCO.
  • Ferguson CM, Croke BFW, Beatson PJ, Ashbolt NJ, Deere DA. 2007. Development of a process-based model to predict pathogen budgets for the Sydney drinking water catchment. Journal of Water and Health. 5:187–208. doi: 10.2166/wh.2007.013b
  • Greene S, Johnes PJ, Bloomfield JP, Reaney SM, Lawley R, Elkhatib Y, Freer J, Odoni N, Macleod CJA, Percy B. 2015. A geospatial framework to support integrated biogeochemical modelling in the United Kingdom. Environmental Modelling & Software. 68:219–232. doi: 10.1016/j.envsoft.2015.02.012
  • Hashemi F, Olesen JE. 2015. Review report on existing scenario studies of nutrient reductions. Soils2Sea Deliverable 2.1. Aarhus University, Denmark, August 2015; [accessed 29 November 2019]. www.Soils2Sea.eu.
  • Heathwaite AL, Fraser AI, Johnes PJ, Lord E, Butterfield D. 2003. The phosphorus indicators tool: A simple model of diffuse P loss from agricultural land to water. Soil Use and Management. 19(1):1–11. doi: 10.1111/j.1475-2743.2003.tb00273.x
  • Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen A-S, Johnson RK, Moe J, Pont D. 2010. The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of the Total Environment. 408:4007–4019. doi: 10.1016/j.scitotenv.2010.05.031
  • Hesser FB, Franko U, Rode M. 2010. Spatially distributed lateral nitrate transport at the catchment scale. Journal of Environmental Quality. doi:10.2134/jeq2009.0031.
  • Hooper RP, Christophersen N, Peters NE. 1990. Modelling streamwater chemistry as a mixture of soilwater end-members—an application to the Panola Mountain catchment, Georgia, USA. Journal of Hydrology. 116:321–343. doi: 10.1016/0022-1694(90)90131-G
  • Hundecha Y, Arheimer B, Donnelly C, Pechlivanidis I. 2016. A regional parameter estimation scheme for a pan-European multi-basin model. Journal of Hydrology: Regional Studies. doi:10.1016/j.ejrh.2016.04.002.
  • Inamdar S. 2011. The use of geochemical mixing models to derive runoff sources and hydrologic flow paths (pp. 163–183). Springer Netherlands. doi:10.1007/978-94-007-1363-5_8.
  • Jayakrishnan R, Srinivasan R, Santhi C, Arnold JG. 2005. Advances in the application of the SWAT model for water resources management. Hydrological Processes. 19:749–762. doi: 10.1002/hyp.5624
  • LAWA (Land, Water, Air Aoteoroa). 2019a. Waiotapu Stm at Campbell Rd Br; [accessed 31 July 2019]. https://www.lawa.org.nz/explore-data/waikato-region/river-quality/waikato-river/waiotapu-stm-at-campbell-rd-br/.
  • LAWA (Land, Water, Air Aoteoroa). 2019b. Waiotapu Stm at Homestead Rd Br; [accessed 31 July 2019]. https://www.lawa.org.nz/explore-data/waikato-region/river-quality/waikato-river/waiotapu-stm-at-homestead-rd-br/.
  • Leip A, Achermann B, Billen G, Bleeker A, Bouwman A, de Vries W, Dragosits U, Doring U, Fernall D, Geupel M, et al. 2011. Integrating nitrogen fluxes at the European scale. In: Sutton M., et al., editor. The European nitrogen assessment. Cambridge: Cambridge University Press; p. 345–376.
  • Lemunyon JL, Gilbert RG. 1993. Concept and need for a phosphorus assessment tool. Journal of Production Agriculture. 6:483–486. doi: 10.2134/jpa1993.0483
  • Lindström G, Pers C, Rosberg J, Strömqvist J, Arheimer B. 2010. Development and testing of the HYPE (hydrological predictions for the Environment) water quality model for different spatial scales. Hydrology Research. 41:295–319. doi: 10.2166/nh.2010.007
  • Matias NG, Johnes PJ. 2012. Catchment phosphorous losses: an export coefficient modelling approach with scenario analysis for water management. Water Resources Management. 26:1041–1064. doi: 10.1007/s11269-011-9946-3
  • McDowell RW, Cox N, Snelder T. 2017. Assessing the yield and load of contaminants with stream order: would policy requiring livestock to be fenced out of high-order streams decrease catchment contaminant loads? Journal of Environment Quality. 46:1038–1047. doi: 10.2134/jeq2017.05.0212
  • McLeod M, Aislabie J, Ryburn J, McGill A. 2008. Regionalizing potential for microbial bypass flow through New Zealand soils. Journal of Environment Quality. 37:1959–1967. doi: 10.2134/jeq2007.0572
  • Ministry for the Environment. 2019. Action for healthy waterways – a discussion document on national direction for our essential freshwater. Wellington, New Zealand: Ministry for the Environment. www.mfe.govt.nz.
  • Moatar F, Abbott BW, Minaudo C, Curie F, Pinay G. 2017. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research. doi:10.1002/2016WR019635.
  • Mockler EM, Deakin J, Archbold M, Daly D, Bruen M. 2016. Nutrient load apportionment to support the identification of appropriate water framework directive measures. Biology and Environment: Proceedings of the Royal Irish Academy. 116B:245–263.
  • Monaghan RM, Manderson A, Smith LC, Eikass L, Burger D. Mitigating the impacts of pastoral livestock farming on New Zealand’s water quality: I. Development of a typology framework for assessing the mitigation effects. (In preparation).
  • Monaghan RM, Mercer G, Smith C, Gray C, de Klein C, Mapp N, Meenken E, Eikaas H, Burger D. 2018. Benchmarking and mitigating contaminant losses to water and GHG emissions to air, for key dairy farm typologies. Report prepared by AgResearch RE450/2017/081 for DairyNZ. 76 p.
  • Monaghan RM, Smith LC, Muirhead RW. 2016. Pathways of contaminant transfers to water from an artificially-drained soil under intensive grazing by dairy cows. Agriculture, Ecosystems and Environment. 220:76–88. doi: 10.1016/j.agee.2015.12.024
  • Muirhead RW. 2015. A farm-scale risk index for reducing fecal contamination of surface waters. Journal of Environment Quality. 44:248–255. doi: 10.2134/jeq2014.07.0311
  • Muirhead RW, Elliot AH, Monaghan RM. 2011. A model framework to assess the effect of dairy farms and wild fowl on microbial water quality during base-flow conditions. Water Research. 45:2863–2874. doi: 10.1016/j.watres.2011.03.001
  • Murphy S, Jordan P, Mellander P, O’Flaherty V. 2015. Quantifying fecal indicator organism hydrological transfer pathways and phases in agricultural catchments. Science of the Total Environment. 520:286–299. doi: 10.1016/j.scitotenv.2015.02.017
  • Nash JE, Sutcliffe J. 1970. River flow forecasting through conceptual models Part I—a discussion of principles. Journal of Hydrology. 10:282–290. doi: 10.1016/0022-1694(70)90255-6
  • Newsome P, Shepherd J, Pairman D. 2013. Establishing New Zealand’s LUCAS Land Use and Land Use-Change and Forestry 2012 Map Landcare Research Report LC 1667; [accessed 29 November 2019]. https://koordinates.com/layer/4316-lucas-new-zealand-land-use-map-1990-2008-2012-v011/.
  • Newsome P, Wilde RH, Willoughby EJ. 2008. Land resource information system spatial data layers. Data dictionary. Landcare Research unpublished report, 74 p.; [accessed 29 November 2019]. https://lris.scinfo.org.nz/document/162-lris-data-dictionary-v3/.
  • NIWA (National Institute of Water and Atmospheric Research Limited). 2018. Overview of New Zealand climate; [accessed 1 June 2019]. http://www.niwa.co.nz/education-and-training/schools/resources/climate/overview.
  • Northland Regional Council. 2014. Waitangi River: catchment description; [accessed 1 July 2019]. https://www.nrc.govt.nz/media/10612/waitangicatchmentdescription.pdf.
  • O’Brien RJ, Misstear BD, Gill LW, Deakin JL, Flynn R. 2013. Developing an integrated hydrograph separation and lumped modelling approach to quantifying hydrological pathways in Irish river catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2013.01.034.
  • Oliver DM, Page T, Hodgson CJ, Heathwaite AL, Chadwick DR, Fish RD, Winter M. 2010. Development and testing of a risk indexing framework to determine field-scale critical source areas of fecal bacteria on grassland. Environmental Modelling and Software. 25:503–512. doi: 10.1016/j.envsoft.2009.10.003
  • Pang L. 2009. Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores. Journal of Environment Quality. 38:1531–1559. doi: 10.2134/jeq2008.0379
  • Pearson L. 2015. Artificial subsurface drainage in Southland: Technical Report. Publication number 2015-07. Environment Southland, New Zealand. 18 p.
  • Pierong R, Takman M. 2014. Evaluation of the hydrological model India-HYPE With focus on precipitation driving data and regionalization quality, Arbetsgruppen för Tropisk Ekologi Committee of Tropical Ecology, Uppsala University, Sweden, Minor Field Study 189 ISSN 1653-5634.
  • Pionke HB, Gburek WJ, Sharpley AN. 2000. Critical source area controls on water quality in an agricultural, watershed located in the Chesapeake basin. Ecological Engineering. 14:325–335. doi: 10.1016/S0925-8574(99)00059-2
  • Porter KDH, Reaney SM, Quilliam RS, Burgess C, Oliver DM. 2017. Predicting diffuse microbial pollution risk across catchments: the performance of SCIMAP and recommendations for future development. Science of the Total Environment. 609:456–465. doi: 10.1016/j.scitotenv.2017.07.186
  • Rattenbury MS, Heron DW. 1997. Revised procedures and specifications for the QMAP GIS. Lower Hutt, New Zealand: Institute of Geological & Nuclear Sciences.
  • Rissmann CWF, Pearson L, Beyer M, Couldrey MA, Lindsay JL, Martin AP, Baisden WT, Clough T, Horton T, Webster-Brown J. 2019. A hydrochemically guided landscape classification system for modelling spatial variation in multiple water quality indices: process-attribute mapping. Science of the Total Environment. 672:815–833. doi: 10.1016/j.scitotenv.2019.03.492
  • Rivas A, Singh R, Horne D, Roygard J, Matthews A, Hedley MJ. 2017. Denitrification potential in the subsurface environment in the Manawatu River catchment, New Zealand: indications from oxidation-reduction conditions, hydrogeological factors, and implications for nutrient management. Journal of Environmental Management. doi:10.1016/j.jenvman.2017.04.015.
  • Sarris TS, Close M, Moore C. 2019b. Uncertainty assessment of nitrate reduction in heterogeneous aquifers under uncertain redox conditions. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-019-01715-w.
  • Sarris TS, Scott D, Close ME, Humphries B, Moore C, Burbery L, Rajanayaka C, Barkle G, Hadfield J. 2019a. The effects of denitrification parameterization and potential benefits of spatially targeted regulation for the reduction of N-discharges from agriculture. Journal of Environmental Management. doi:10.1016/j.jenvman.2019.06.074.
  • Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht G, Dumont E, Fekete BM, Garnier J, Harrison JA. 2010. Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochemical Cycles. doi:10.1029/ 2009GB003587 pdf.
  • Singh SK, Pahlow M, Booker DJ, Shankar U, Chamorro A. 2018. Towards baseflow index characterisation at national scale in New Zealand. Journal of Hydrology. doi:10.1016/j.jhydrol.2018.11.025.
  • Singh SK, Stenger R. 2018. Indirect methods to elucidate water flows and contaminant transfer pathways through meso-scale catchments – a review. Environmental Processes. 5:683–706. doi: 10.1007/s40710-018-0331-6
  • Singh SK, Zeddies M, Shankar U, Griffiths GA. 2019. Potential groundwater recharge zones within New Zealand. Geoscience Frontiers. doi:10.1016/j.gsf.2018.05.018.
  • Sivapalan M. 2009. The secret of ‘doing better hydrological science’: change the question!. Hydrological Processes. doi:10.1002/hyp.7242.
  • Snelder T, Biggs B. 2002. Multiscale river environment classification for water resources management. Journal of American Water Resources Management. doi:10.1111/j.1752-1688.2002.tb04344.x.
  • Srinivasan MS, Kleinman P, Sharpley AN, Buob T, Gburek WJ. 2007. Hydrology of small field plots used to study phosphorus runoff under simulated rainfall. Journal of Environment Quality. 36:1833–1842. doi: 10.2134/jeq2007.0017
  • Srinivasan MS, Singh S, Wilcock R. 2019. Climate change impacts on four agricultural, headwater watersheds from varying climatic regions of New Zealand. In: Singh S., Dhanya C., editor. Hydrology in a changing world. Springer water. Cham: Springer; doi:10.1007/978-3-030-02197-9_11.
  • Tabachnick BG, Fidell LS. 2013. Using multivariate statistics. 6th ed. Indianapolis, IN: Pearson Education.
  • USDA-NRCS (United States Department of Agriculture–Natural Resources Conservation Service). 2011. Conservation practice standard, nutrient management 590; [accessed 16 March 2019]. http://www. nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1046177.pdf.
  • US EPA (United States Environmental Protection Agency). 2009. Impaired waters listing and total maximum daily loads; [accessed December 1, 2019]. http://www.epa.gov/owow/tmdl/.
  • Velázquez JA, Schmid J, Ricard S, Muerth MJ, Gauvin St-Denis B, Minville M, Chaumont D, Caya D, Ludwig R, Turcotte R. 2013. An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrology and Earth System Sciences. 17:565–578. doi: 10.5194/hess-17-565-2013
  • Wilcock RJ, Monaghan RM, McDowell RW, Verburg P, Horrox J, Chagué-Goff C, Duncan MJ, Rutherford A, Zemansky G, Scarsbrook MR, et al. 2013. Managing pollutant inputs from pastoral dairy farming to maintain water quality of a lake in a high-rainfall catchment. Marine and Freshwater Research. 64:447–459. doi: 10.1071/MF12296
  • Wilson SR, Close ME, Abraham P. 2018. Applying linear discriminant analysis to predict groundwater redox conditions conducive to denitrification. Journal of Hydrology. doi:10.1016/j.jhydrol.2017.11.045.
  • Woodward SJR, Stenger R. 2018. Bayesian chemistry-assisted hydrograph separation (BACH) and nutrient load partitioning from monthly stream phosphorus and nitrogen concentrations. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-018-1612-3.
  • Woodward SJR, Stenger R, Bidwell VJ. 2013. Dynamic analysis of stream flow and water chemistry to infer subsurface water and nitrate fluxes in a lowland dairying catchment. Journal of Hydrology. doi:10.1016/j.jhydrol.2013.07.044.
  • Woodward SJR, Wöhling T, Rode M, Stenger R. 2017. Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference. Journal of Hydrology. 552:684–703. doi: 10.1016/j.jhydrol.2017.07.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.