6,025
Views
26
CrossRef citations to date
0
Altmetric
Review article

Ocean acidification in New Zealand waters: trends and impacts

ORCID Icon, , , , , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Pages 155-195 | Received 15 May 2017, Accepted 18 Aug 2017, Published online: 25 Sep 2017

References

  • Allan BJM, Domenici P, McCormick MI, Watson SA, Munday PL. 2013. Elevated CO2 affects predator-prey interactions through altered performance. PLoS One. 8:e58520. doi: 10.1371/journal.pone.0058520
  • Anderson OF, Guinotte JM, Rowden AA, Tracey DM, Mackay KA, Clark MR. 2016. Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the seas around New Zealand. Deep Sea Research Part I: Oceanographic Research Papers. 115:265–292. doi: 10.1016/j.dsr.2016.07.006
  • Anon. 2014. New Zealand seafood exports. Report 7: Seafood exports by product type. Calendar year to December 2014. Seafood New Zealand. p. 118.
  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences. 105(45):17442–17446. doi: 10.1073/pnas.0804478105
  • Baker CS, Chilvers BL, Childerhouse S, Constantine R, Currey R, Mattlin R, Van Helden A, Hitchmough R, Rolfe J. 2016. Conservation status of New Zealand marine mammals, 2013. (New Zealand threat classification series; 14).
  • Barr NG, Lohrer AM, Cummings VJ. 2017. An in situ incubation method for measuring the productivity and responses of under-ice algae to ocean acidification and warming in polar marine habitats. Limnology and Oceanography: Methods. 15(3):264–275. doi: 10.1002/lom3.10154
  • Barton A, Waldbusser GG, Feely RA, Hales B, Langdon CJ. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography. 28(2):146–159. doi: 10.5670/oceanog.2015.38
  • Bates T. 2015. Sponge physiology and function in a changing ocean: responses to ocean acidification and increased sea surface temperature [MSc thesis]. Wellington: Victoria University of Wellington.
  • Bates N, Astor Y, Church M, Currie K, Dore J, Gonaález-Dávila M, Lorenzoni L, Muller-Karger F, Olafsson J, Santa-Casiano M. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography. 27(1):126–141. doi: 10.5670/oceanog.2014.16
  • Baumann H, Talmage SC, Gobler CJ. 2011. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change. 2(1):38–41. doi: 10.1038/nclimate1291
  • Bednaršek N, Harvey CJ, Kaplan IC, Feely RA, Možina J. 2016. Pteropods on the edge: cumulative effects of ocean acidification, warming, and deoxygenation. Progress in Oceanography. 145:1–24. doi: 10.1016/j.pocean.2016.04.002
  • Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. 2013. Could some coral reefs become sponge reefs as our climate changes? Global Change Biology. 19:2613–2624. doi: 10.1111/gcb.12212
  • Bennett HM, Altenrath C, Woods L, Davy SK, Webster NS, Bell JJ. 2016. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Global Change Biology. 23: 2031–2046. doi: 10.1111/gcb.13474
  • Bergquist PR. 1978. Sponges. Berkeley: University of California Press.
  • Berman J, Bell JJ. 2016. Short-term temporal variability in a temperate sponge assemblage. Marine Biology. 163:241–249. doi: 10.1007/s00227-016-2825-y
  • Bermúdez R, Feng Y, Roleda MY, Tatters AO, Hutchins DA, Larsen T, Boyd PW, Hurd CL, Riebesell U, Winder M. 2015. Long-term conditioning to elevated pCO2 and warming influences the fatty and amino acid composition of the diatom Cylindrotheca fusiformis. PLoS One. 10(5):e0123945. doi: 10.1371/journal.pone.0123945
  • Bostock HC, Hayward BW, Neil HL, Currie KI, Dunbar GB. 2011. Deep-water carbonate concentrations in the southwest Pacific. Deep Sea Research Part I: Oceanographic Research Papers. 58:72–85. doi: 10.1016/j.dsr.2010.11.010
  • Bostock HC, Mikaloff-Fletcher SE, Williams MJM. 2013. Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans. Biogeosciences. 10:6199–6213. doi: 10.5194/bg-10-6199-2013
  • Bostock HC, Sutton PJ, Williams MJM, Opdyke BN. 2013. Reviewing the circulation and mixing of Antarctic intermediate water in the South Pacific using evidence from geochemical tracers and Argo float trajectories. Deep Sea Research Part I: Oceanographic Research Papers. 73:84–98. doi: 10.1016/j.dsr.2012.11.007
  • Bostock HC, Tracey DM, Currie KI, Dunbar GB, Handler MR, Mikaloff-Fletcher SE, Smith AM, Williams MJM. 2015. The carbonate mineralogy and distribution of habitat forming deep-sea corals in the southwest Pacific region. Deep Sea Research Part I: Oceanographic Research Papers. 100:88–104. doi: 10.1016/j.dsr.2015.02.008
  • Boyd PW, Cornwall CE, Davison A, Doney SC, Fourquez M, Hurd CL, Lima ID, McMinn A. 2016. Biological responses to envrionmental heterogeneity under future ocean conditions. Global Change Biology. 22:2633–2650. doi: 10.1111/gcb.13287
  • Boyd PW, Dillingham PW, McGraw CM, Armstrong EA, Cornwall CE, Feng YY, Hurd CL, Gault-Ringold M, Roleda MY, Timmins-Schiffman E, et al. 2015. Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change. 6:207–213.
  • Boyd P, LaRoche J, Gall M, Frew R, McKay RML. 1999. Role of iron, light, and silicate in controlling algal biomass in Subantarctic waters SE of New Zealand. Journal of Geophysical Research: Oceans. 104(C6):13395–13408. doi: 10.1029/1999JC900009
  • Brailsford GW, Stephens BB, Gomez AJ, Riedel K, Mikaloff Fletcher SE, Nichol SE, Manning MR. 2012. Long-term continuous atmospheric CO2 measurements at Baring Head, New Zealand. Atmospheric Measurement Techniques. 5(12):3109–3117. doi: 10.5194/amt-5-3109-2012
  • Brauner CJ. 2008. Acid-base balance. In: Finn RN and Kapoor BG, editors. Fish larval physiology. Enfield: Science Publishers, 724 p.; p. 185–198.
  • Breitburg DL, Salisbury J, Bernhard JM, Cai WJ, Dupont S, Doney SC, Kroeker KJ, Levin LA, Long WC, Milke LM, et al. 2015. And on top of all that … coping with ocean acidification in the midst of many stressors. Oceanography. 28(2):48–61. doi: 10.5670/oceanog.2015.31
  • Brinkman TJ, Smith AM. 2015. Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Marine and Freshwater Research. 664:360–370. doi: 10.1071/MF14077
  • Britton D, Cornwall CE, Revill AT, Hurd CL, Johnson CR. 2016. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata. Scientific Reports. 6:26036. DOI:10.1038/srep26036.
  • Brix H, Currie KI, Mikaloff Fletcher S. 2013. Seasonal variability of the carbon cycle in Subantarctic surface water in the South West Pacific. Global Biogeochemical Cycles. 27:200–211. doi: 10.1002/gbc.20023
  • Burrell TJ, Maas EW, Hulston DA, Law CS. 2015. Bacterial abundance, processes and diversity responses to acidification at a coastal CO2 vent. FEMS Microbiology Letters. 362. DOI:101093/femsle/fnv154. doi: 10.1093/femsle/fnv154
  • Burrell TJ, Maas EW, Hulston DA, Law CS. 2017. Variable response to warming and ocean acidification by bacterial processes in different plankton communities. Applied Environmental Microbiology. 79:49–62.
  • Burrell TJ, Maas EW, Teesdale-Spittle PH, Law CS. 2016. Assessing approaches to determine the effect of ocean acidification on bacterial processes. Biogeosciences. 13: 4379–4388. doi: 10.5194/bg-13-4379-2016
  • Byrne M, Gonzalez-Bernat M, Doo S, Foo S, Soars N, Lamare M. 2013. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Marine Ecology Progress Series. 473:235–246. doi: 10.3354/meps10058
  • Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S. 2013. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philosophical Transactions of the Royal Society B: Biological Sciences. 368:20120439. doi: 10.1098/rstb.2012.0439
  • Cairns SD, Macintyre IG. 1992. Phylogenetic implications of calcium carbonate mineralogy in Stylasteridae (Cnidaria: Hydrozoa). Palaios. 7:96–107. doi: 10.2307/3514799
  • Chang FH, Northcote L. 2016. Species composition of extant coccolithophores including twenty six new records from the southwest Pacific near New Zealand. Marine Biodiversity Records. 9(1):75. doi: 10.1186/s41200-016-0077-7
  • Checkley DM Jr, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R. 2009. Elevated CO2 enhances otolith growth in young fish. Science. 324:1683. doi: 10.1126/science.1169806
  • Chiswell SM, Bostock HC, Sutton PJH, Williams MJM. 2015. Physical oceanography of the deep seas around New Zealand: a review. New Zealand Journal of Marine and Freshwater Research. 49: 286–317. doi: 10.1080/00288330.2014.992918
  • Chung WS, Marshall NJ, Watson SA, Munday PL, Nilsson GE. 2014. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. Journal of Experimental Biology. 217:323–326. doi: 10.1242/jeb.092478
  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, et al. 2013. Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change]. Cambridge (UK): Cambridge University Press. p. 465–570.
  • Clark D, Lamare M, Barker M. 2009. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Marine Biology. 156:1125–1137. doi: 10.1007/s00227-009-1155-8
  • Clark MR, Koslow JA. 2012. Impacts of fishing on seamounts In: Pitcher TJ; Hart PJB; De’ath G, Fabricius K E, Sweatman H, Puotinen M, editors. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences 109:17995–17999.
  • Clark MR, Rowden AA. 2009. Effects of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham rise, New Zealand. Deep Sea Research Part I: Oceanographic Research Papers. 56:1540–1554. doi: 10.1016/j.dsr.2009.04.015
  • Comeau S, Jeffree R, Teyssie JL, Gattuso JP. 2010. Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS One. 5:e11362. doi: 10.1371/journal.pone.0011362
  • Cooley SR, Kite-Powell HL, Doney SC. 2009. Ocean acidification’s potential to alter global marine ecosystem services. Oceanography. 22(4):172–181. doi: 10.5670/oceanog.2009.106
  • Cornwall CE, Boyd PW, McGraw CM, Hepburn CD, Pilditch CA, Morris JN, Smith AM, Hurd CL. 2014. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS One. 9:e97235. doi: 10.1371/journal.pone.0097235
  • Cornwall CE, Eddy TD. 2015. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem. Conservation Biology. 29:207–215. doi: 10.1111/cobi.12394
  • Cornwall CE, Hepburn CD, McGraw CM, Currie KI, Pilditch CA, Hunter KA, Boyd PW, Hurd CL. 2013. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society Biological Sciences Series B. 280:20132201. doi: 10.1098/rspb.2013.2201
  • Cornwall CE, Hepburn CD, Pilditch CA, Hurd CL. 2013. Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae. Limnology and Oceanography. 58:121–130. doi: 10.4319/lo.2013.58.1.0121
  • Cornwall CE, Hepburn CD, Pritchard DW, McGraw CM, Currie KI, Hunter KA, Hurd CL. 2012. Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. Journal of Phycology. 48:137–144. doi: 10.1111/j.1529-8817.2011.01085.x
  • Cornwall CE, Pilditch CA, Hepburn CD, Hurd CL. 2015. Canopy macroalgae influence understorey corallines’ metabolic control of near-surface pH and oxygen concentration. Marine Ecology Progress Series. 525:81–95. doi: 10.3354/meps11190
  • Cornwall CE, Revill AT, Hurd CL. 2015. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynthesis Research. 124(2):181–190. doi: 10.1007/s11120-015-0114-0
  • Cross EL, Peck LS, Harper EM. 2015. Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). Journal of Experimental Marine Biology and Ecology. 462:29–35. doi: 10.1016/j.jembe.2014.10.013
  • Cross EL, Peck LS, Lamare MD, Harper EM. 2016. No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES Journal of Marine Science. 73(3):920–926. doi: 10.1093/icesjms/fsv031
  • CSIRO Atlas of Regional Seas. 2009. http://wwwmarinecsiroau/c.dunn/cars2009/2009.
  • Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday J, et al. 2011. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS One. 6(1):e16069. doi: 10.1371/journal.pone.0016069
  • Cummings VJ, Marriott PM, Halliday NJ, Smith AM, Peebles B. 2016. Assessment of shellfish mineralogy and structure. Final research report prepared for the Ministry of Primary Industries project ZBD2013-06. 55 p.
  • Cunningham SC, Smith AM, Lamare MD. 2016. The effects of elevated pCO2 on growth, shell production and metabolism of cultured juvenile abalone, Haliotis iris. Aquaculture Research. 47:2375–2392. doi: 10.1111/are.12684
  • Currie KI, Reid MR, Hunter KA. 2011. Interannual variability of carbon dioxide drawdown by Subantarctic surface water near New Zealand. Biogeochemistry. 104:23–34. doi: 10.1007/s10533-009-9355-3
  • Denny MW, Miller LP, Stokes MD, Hunt LJH, Helmuth BST. 2003. Extreme water velocities: topographic amplification of wave-induced flow in the surf zone of rocky shores. Limnology and Oceanography. 48:1–8. doi: 10.4319/lo.2003.48.1.0001
  • Desmond MJ, Pritchard DW, Hepburn CD. 2015. Light limitation within southern New Zealand kelp forest communities. PLoS ONE. 10:e0123676. doi: 10.1371/journal.pone.0123676
  • Diaz-Pulido G, Cornwall CE, Gartrell P, Hurd CL, Tran DV. 2016. Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification. Coral Reefs. 35(4):1327–1341. doi: 10.1007/s00338-016-1481-5
  • Diaz-Pulido G, Gouzezo M, Tilbrook B, Dove S, Anthony K. 2011. High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters. 14:156–162. doi: 10.1111/j.1461-0248.2010.01565.x
  • Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Marine Science. 1:169–192. doi: 10.1146/annurev.marine.010908.163834
  • Dupont S, Ortega-Martínez O, Thorndyke M. 2010. Impact of near-future ocean acidification on echinoderms. Ecotoxicology. 19:449–462. doi: 10.1007/s10646-010-0463-6
  • Enzor LA, Zippay ML, Place SP. 2013. High latitude fish in a high CO2 world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology. 164:154–161. doi: 10.1016/j.cbpa.2012.07.016
  • Ericson J. 2010. Effects of ocean acidification on fertilisation and early development in polar and temperate marine invertebrates [MSc thesis]. Dunedin: University of Otago; p. 117.
  • Fabricius K, Kluibenschedl A, Harrington L, Noonan S, De’ath G. 2015. In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Scientific Reports 5, 9537. DOI:10.1038/srep09537.
  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change. 1(3):165–169. doi: 10.1038/nclimate1122
  • Fabry VJ. 2008. Marine calcifiers in a high-CO2 ocean. Science. 320:1020–1022. doi: 10.1126/science.1157130
  • Farr T, Broom J, Hart D, Neill K, Nelson WA. 2009. Common coralline algae of northern New Zealand: An identification guide. NIWA.
  • Feely RA, Sabine CL, Byrne RH, Millero FJ, Dickson AG, Wanninkhof R, Murata A, Miller LA, Greeley D. 2012. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Global Biogeochemical Cycles. 26, GB3001. doi: 10.1029/2011GB004157
  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science. 305:362–366. doi: 10.1126/science.1097329
  • Feng Y. 2015. Environmental controls on the marine coccolithophore Emiliania huxleyi strain NIWA1108 [PhD thesis]. Dunedin: University of Otago.
  • Feng Y, Roleda MY, Armstrong E, Boyd PW, Hurd CL. 2016. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnology and Oceanography. 62:519–540. doi: 10.1002/lno.10442
  • Fernández PA, Hurd CL, Roleda MY. 2014. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. Journal of Phycology. 50:998–1008. doi: 10.1111/jpy.12247
  • Fernández PA, Roleda MY, Hurd CL. 2015. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynthesis Research. 124:293–304. doi: 10.1007/s11120-015-0138-5
  • Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP. 2011. Putting prey and predator into the CO2 equation – qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecology Letters. 14:1143–1148. doi: 10.1111/j.1461-0248.2011.01683.x
  • Findlay HS, Calosi P, Crawfurd K. 2011. Determinants of the PIC:POC response in the coccolithophore Emiliania huxleyi under future ocean acidification scenarios. Limnology and Oceanography. 56:1168–1178. doi: 10.4319/lo.2011.56.3.1168
  • Flynn KJ, Clark DR, Wheeler G. 2016. The role of coccolithophore calcification in bioengineering their environment. Proceedings of the Royal Society B: Biological Sciences. 283:20161099. doi: 10.1098/rspb.2016.1099
  • Foo SA, Sparks KM, Uthicke S, Byrne M, Lamare M. 2016. Contributions of genetic and environmental variance in early development of the Antarctic sea urchin Sterechinus neumayeri in response to increased ocean temperature and acidification. Marine Biology. 163(6):130. DOI:10.1007/s00227-016-2903-1.
  • Forsgren E, Dupont S, Jutfelt F, Amundsen T. 2013. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecology and Evolution. 3:3637–3646. doi: 10.1002/ece3.709
  • Gammon M. 2016. The physiological response of a protected deep sea coral (Solenosmilia variabilis) to ocean acidification [Unpublished Master’s thesis]. Wellington: Victoria University. 117 p.
  • Gaylord B, Rosman JH, Reed DC, Koseff JR, Fram J, MacIntyre S, Arkema K, McDonald C, Brzezinski MA, Largier JL, Monismith SG. 2007. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnology and Oceanography. 52:1838–1852. doi: 10.4319/lo.2007.52.5.1838
  • Gazeau F, Parker LM, Comeau S, Gattuso J, O’Connor WA, Martin S, Pörtner H, Ross PM. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology. 160:2207–2245. doi: 10.1007/s00227-013-2219-3
  • Gibbin EM, Putnam HM, Davy SK, Gates RD. 2014. Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cells. Journal of Experimental Biology. 217:1963–1969. doi: 10.1242/jeb.099549
  • Gordon DP, editor. 2009. New Zealand inventory of biodiversity. Vol. 1, Kingdom Animalia Radiata, Lopotrochozoa, Deuteromstomia. Christchurch: Canterbury University Press. 648 p.
  • Gordon DP, Beaumont J, MacDiarmid A, Robertson DA, Ahyong ST. 2010. Marine biodiversity of Aotearoa New Zealand. PLoS One. 5(8):1–17. doi: 10.1371/journal.pone.0010905
  • Gori A, Ferrier-Pagès C, Hennige SJ, Murray F, Rottier C, Wicks LC, Roberts JM. 2016. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ. 4:e1606. doi: 10.7717/peerj.1606
  • Gradoville MR, White AE, Böttjer D, Church MJ, Letelier RM. 2014. Diversity trumps acidification: lack of evidence for carbon dioxide enhancement of Trichodesmium community nitrogen or carbon fixation at Station ALOHA. Limnology and Oceanography. 59(3):645–659. doi: 10.4319/lo.2014.59.3.0645
  • Gray BE, Smith AM. 2004. Mineralogical variation in shells of the blackfoot abalone Haliotis iris (Mollusca: Gastropoda: Haliotidae), in southern New Zealand. Pacific Science. 58:47–64. doi: 10.1353/psc.2004.0005
  • Griffith GP, Fulton EA, Gorton R, Richardson AJ. 2012. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conservation Biology. 26(6):1145–1152. doi: 10.1111/j.1523-1739.2012.01937.x
  • Guilloteau P, Poulin R, MacLeod CD. 2016. Impacts of ocean acidification on multiplication and caste organisation of parasitic trematodes in their gastropod host. Marine Biology. 163(5):96. doi: 10.1007/s00227-016-2871-5
  • Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R. 2006. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers in Ecology and the Environment. 4(3):141–146. doi: 10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2
  • Gunderson AR, Armstrong EJ, Stillman JH. 2016. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annual Review of Marine Science. 8:357–378. doi: 10.1146/annurev-marine-122414-033953
  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature. 454:96–99. doi: 10.1038/nature07051
  • Harland H, MacLeod CD, Poulin R. 2015. Non-linear effects of ocean acidification on the transmission of a marine intertidal parasite. Marine Ecology Progress Series. 536:55–64. doi: 10.3354/meps11416
  • Harvey A, Woelkerling W, Farr T, Neill K, Nelson W. 2005. Coralline algae of central New Zealand: an identification guide to common ‘crustose’ species. (NIWA Information Series). 145 p.
  • Heenan A, Pomeroy R, Bell J, Munday PL, Cheung W, Logan C, Brainard R, Yang Amri A, Aliño P, Armada N, et al. 2015. A climate-informed, ecosystem approach to fisheries management. Marine Policy. 57:182–192. doi: 10.1016/j.marpol.2015.03.018
  • Heming, TA, Buddington RK. 1988. Yolk-absorption in embryonic and larval fishes. In: Hoar WS, Randall DJ, editors. Fish physiology , Vol. 11, Part A. San Diego (CA): Academic Press; p. 407–446.
  • Hennige SJ, Wicks LC, Kamenos NA, Bakker DCE, Findlay HS, Dumousseaud C, Roberts JM. 2014. Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography. 99:27–35. doi: 10.1016/j.dsr2.2013.07.005
  • Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL. 2011. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology. 17:2488–2497. doi: 10.1111/j.1365-2486.2011.02411.x
  • Heuer RM, Grosell M. 2014. Physiological impacts of elevated carbon dioxide and ocean acidification on fish American Journal of Regulatory. Integrative and Comparative Physiology. 307:R1061–R1084. doi: 10.1152/ajpregu.00064.2014
  • Hoffmann L, Breitbarth E, Boyd PW, Hunter KA. 2012. Influence of ocean warming and acidification on trace metal biogeochemistry. Marine Ecology Progress Series. 470:191–205. doi: 10.3354/meps10082
  • Hoffmann LJ, Breitbarth E, McGraw CM, Law CS, Currie KI, Hunter KA. 2013. A trace-metal clean, pH-controlled incubator system for ocean acidification incubation studies. Limnology and Oceanography: Methods. 11(1):53–61. doi: 10.4319/lom.2013.11.53
  • Hoppe CJ, Hassler CS, Payne CD, Tortell PD, Rost B, Trimborn S. 2013. Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities. PLoS One. 8(11):e79890. doi: 10.1371/journal.pone.0079890
  • Hoppe CJM, Langer G, Rost B. 2011. Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology. 406:54–62. doi: 10.1016/j.jembe.2011.06.008
  • Hurd CL. 2015. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology. 51(4):599–605. doi: 10.1111/jpy.12307
  • Hurd CL, Cornwall CE, Currie KI, Hepburn CD, McGraw CM, Hunter KA, Boyd P. 2011. Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Global Change Biology. 17:3254–3262. doi: 10.1111/j.1365-2486.2011.02473.x
  • Hurd CL, Harrison PJ, Bischof K, Lobban CS. 2014. Seaweed ecology and physiology. Christchurch: Cambridge University Press. 551 p.
  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA. 2009. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology. 45(6):1236–1251. doi: 10.1111/j.1529-8817.2009.00768.x
  • Hutchins DA, Mulholland MR, Fu F. 2009. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography. 22(4):128–145. doi: 10.5670/oceanog.2009.103
  • Iglesias-Rodriguez MD, Halloran PR, Rickaby RE, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, et al. 2008. Phytoplankton calcification in a high-CO2 world. Science. 320:336–340. doi: 10.1126/science.1154122
  • James RK, Hepburn CD, Cornwall CE, McGraw CM, Hurd CL. 2014. Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Marine Biology. 161:1687–1696. doi: 10.1007/s00227-014-2453-3
  • Kamenos NA, Perna G, Gambi MC, Micheli F, Kroeker KJ. 2016. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Proceedings of the Royal Society B: Biological Sciences. 283:20161159. doi: 10.1098/rspb.2016.1159
  • Karelitz SE, Uthicke S, Foo SA, Barker MF, Byrne M, Pecorino D, Lamare MD. 2016. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics. Global Change Biology. 23: 657–672. doi: 10.1111/gcb.13452
  • Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A. 2013. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change. 3:843–847. doi: 10.1038/nclimate1937
  • Kroeker KJ, Kordas RL, Crim R, Singh GG. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology. 19:1884–1896. doi: 10.1111/gcb.12179
  • Langer G, Geisen M, Baumann KH, Kläs J, Riebesell U, Thoms S, Young JR. 2006. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems. 7:Q09006. doi: 10.1029/2005GC001227
  • Langer G, Nehrke G, Probert I, Ly J, Ziveri P. 2009. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences. 6:2637–2646. doi: 10.5194/bg-6-2637-2009
  • Law CS, Breitbarth E, Hoffmann LJ, McGraw CM, Langlois RJ, LaRoche J, Marriner A, Safi KA. 2012. No stimulation of nitrogen fixation by non-filamentous diazotrophs under elevated CO2 in the South Pacific. Global Change Biology. 18:3004–3014. doi: 10.1111/j.1365-2486.2012.02777.x
  • Law CS, Ellwood M, Woodward EMS, Marriner A, Bury S, Safi K. 2011. Response of surface nutrient inventories and nitrogen fixation to a tropical cyclone in the South-West Pacific. Limnology and Oceanography. 56(4):1372–1385. doi: 10.4319/lo.2011.56.4.1372
  • Law CS, Rickard GJ, Mikaloff-Fletcher SE, Pinkerton MH, Behrens E, Chiswell SM, Currie K. Forthcoming. Climate change projections for the surface ocean around New Zealand. New Zealand Journal of Marine and Freshwater Research.
  • Law CS, Rickard GJ, Mikaloff-Fletcher SE, Pinkerton MH, Gorman R, Behrens E, Chiswell SM, Bostock HC, Anderson O, Currie K. 2016. The New Zealand EEZ and South West Pacific. Synthesis report RA2, marine case study. Climate changes, impacts and implications (CCII) for New Zealand to 2100. MBIE contract C01X1225. 41 p.
  • Law CS, Schwarz JN, Chang FH, Nodder SD, Northcote LC, Safi KA, Marriner A, Langlois RJ, LaRoche J, Amosa P, et al. 2014. Predicting changes in plankton biodiversity and productivity of the EEZ in response to climate change induced ocean acidification. Final research report for the NZ Ministry of Primary Industries on project ZBD200811.
  • Leal PP, Hurd CL, Fernández PA, Roleda MY. 2017a. Meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida under ocean acidification and ocean warming: independent effects are more important than their interaction. Marine Biology. 164. DOI:10.1007/s00227-016-3039-z.
  • Leal PP, Hurd CL, Fernández PA, Roleda MY. 2017b. Ocean acidification and kelp development: reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. Journal of Phycology. DOI:10.1111/jpy.12518.
  • Lebrato M, Andersson AJ, Ries JB, Aronson RB, Lamare MD, Koeve W, Oschlies A, Iglesias-Rodriguez MD, Thatje S, Amsler M, et al. 2016. Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide. Global Biogeochemical Cycles. 30: 1038–1053. doi: 10.1002/2015GB005260
  • Lohbeck KT, Riebesell U, Reusch TB. 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience. 5(5):346–351. doi: 10.1038/ngeo1441
  • Lombardi C, Taylor PD, Cocito S. 2013. Bryozoan constructions in a changing Mediterranean Sea. In: Goffredo S, Dubinski Z, editors. The Mediterranean Sea: its history and present challenges. Dordrecht: Springer Science; p. 373–384.
  • Lundquist CJ, Ramsay D, Bell R, Swales A, Kerr S. 2011. Predicted impacts of climate change on New Zealand’s biodiversity. Pacific Conservation Biology. 17:179–191. doi: 10.1071/PC110179
  • Maas EW, Hall JA, Law CS, Pickmere S, Currie KI, Chang FH, Voyles KM, Caird D. 2013. Effect of ocean acidification on bacterial abundance, activity and diversity in the Ross Sea, Antarctica. Aquatic Microbial Ecology. 70:1–15. doi: 10.3354/ame01633
  • MacDiarmid AB, Law CS, Pinkerton M, Zeldis J. 2013. New Zealand marine ecosystem services In Dymond JR, editor. Ecosystem services in New Zealand – conditions and trends. Lincoln: Manaaki Whenua Press. p. 238–253.
  • MacLeod CD. 2015. The effects of ocean acidification on host–parasite associations [PhD thesis]. Dunedin: University of Otago.
  • MacLeod CD. 2016. Parasitic infection: a missing piece of the ocean acidification puzzle – ICES. Journal of Marine Science. 74: 929–933.
  • MacLeod CD, Poulin R. 2012. Host–parasite interactions: a litmus test for ocean acidification? Trends in Parasitology. 28(9):365–369. doi: 10.1016/j.pt.2012.06.007
  • MacLeod CD, Poulin R. 2015a. Differential tolerances to ocean acidification by parasites that share the same host. International Journal for Parasitology. 457:485–493. doi: 10.1016/j.ijpara.2015.02.007
  • MacLeod CD, Poulin R. 2015b. Interactive effects of parasitic infection and ocean acidification on the calcification of a marine gastropod. Marine Ecology Progress Series. 537:137–150. doi: 10.3354/meps11459
  • MacLeod CD, Poulin R. 2016a. Parasitic infection: a buffer against ocean acidification? Biology Letters. 12:20160007. doi: 10.1098/rsbl.2016.0007
  • MacLeod CD, Poulin R. 2016b. Parasitic infection alters the physiological response of a marine gastropod to ocean acidification. Parasitology. 143:1397–1408. doi: 10.1017/S0031182016000913
  • MacLeod CD, Doyle HL, Currie KI. 2015. Technical note: maximising accuracy and minimising cost of a potentiometrically regulated ocean acidification simulation system. Biogeosciences. 12:713–721. doi: 10.5194/bg-12-713-2015
  • Maier C, Hegeman J, Weinbauer MG, Gattuso JP. 2009. Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences. 6:1671–1680. doi: 10.5194/bg-6-1671-2009
  • Martz TR, Connery JG, Johnson KS. 2010. Testing the Honeywell Durafet (R) for seawater pH applications. Limnology and Oceanography: Methods. 8:172–184. doi: 10.4319/lom.2010.8.172
  • McConnaughey TA, Gillikin DP. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters. 28:287–299. doi: 10.1007/s00367-008-0116-4
  • McCoy SJ, Kamenos NA. 2015. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology. 51:6–24. doi: 10.1111/jpy.12262
  • McGraw CM, Cornwall CE, Reid MR, Currie KI, Hepburn CD, Boyd PW, Hunter KA. 2010. An automated pH-controlled culture system for laboratory-based ocean acidification experiments. Limnology and Oceanography: Methods. 8(12):686–694. doi: 10.4319/lom.2010.8.0686
  • Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M. 2009. Swimming performance in Atlantic cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater. Aquatic Toxicology. 92(1):30–37. doi: 10.1016/j.aquatox.2008.12.011
  • Meyer J, Riebesell U. 2015. Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences. 12:1671–1682. doi: 10.5194/bg-12-1671-2015
  • Miles H, Widdicombe S, Spicer JI, Hall-Spencer JM. 2007. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Marine Pollution Bulletin. 54:89–96. doi: 10.1016/j.marpolbul.2006.09.021
  • Miller GM, Watson SA, McCormick MI, Munday PL. 2013. Increased CO2 stimulates reproduction in a coral reef fish. Global Change Biology. 19:3037–3045. doi: 10.1111/gcb.12259
  • Milliman JD, Troy PJ, Balch WM, Adams AK, Li Y-H, Mackenzie FT. 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Research Part I: Oceanographic Research Papers. 46:1653–1669. doi: 10.1016/S0967-0637(99)00034-5
  • Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby RE, Poulton AJ, Tyrrell T, Beaufort L, Dutkiewicz S, Gibbs S, et al. 2016. Why marine phytoplankton calcify. Science Advances. 2(7):e1501822. doi: 10.1126/sciadv.1501822
  • Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America. 106:1848–1852. doi: 10.1073/pnas.0809996106
  • Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MCO, Chivers DP. 2010. Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences of the United States of America. 107:12930–12934. doi: 10.1073/pnas.1004519107
  • Munday PL, Watson SA, Parsons DM, King A, Barr NG, McLeod IM, Allan BJM, Pether SMJ. 2015. Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES Journal of Marine Science. 73(3):641–649. doi: 10.1093/icesjms/fsv210
  • Murata A, Kumamoto Y, Watanabe S, Fukasawa M. 2007. Decadal increases of anthropogenic CO2 in the south Pacific subtropical ocean along 32°S. Journal of Geophysical Research. 112:C05033.
  • Nagelkerken I, Russell BD, Gillanders BM, Connell SD. 2015. Ocean acidification alters fish populations indirectly through habitat modification. Nature Climate Change. 6:89–93. doi: 10.1038/nclimate2757
  • Nagelkerken I, Munday PL. 2016. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Global Change Biology. 22(3):974–989. doi: 10.1111/gcb.13167
  • Navarro JM, Torres R, Acuna K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C, Aguilera V. 2013. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere. 90:1242–1248. doi: 10.1016/j.chemosphere.2012.09.063
  • Nelson CS. 1978. Temperate shelf carbonate sediments in the Cenozoic of New Zealand. Sedimentology. 25:737–771. doi: 10.1111/j.1365-3091.1978.tb00328.x
  • Nelson CS. 1988. An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology. 60:3–12. doi: 10.1016/0037-0738(88)90108-X
  • Nelson CS, Keane SL, Head PS. 1988. Non-tropical carbonate deposits on the modern New Zealand shelf. Sedimentary Geology. 60:71–94. doi: 10.1016/0037-0738(88)90111-X
  • Nelson WA. 2009. Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research. 60:787–801. doi: 10.1071/MF08335
  • Nelson WA, Neill KF, D’Archino R, Anderson T, Beaumont J, Dalen J. 2015. Beyond diving depths: deepwater macroalgae in the New Zealand region. Marine Biodiversity. 45:797–818. doi: 10.1007/s12526-014-0293-5
  • Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sorensen C, Watson SA, Munday PL. 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change. 2(3):201–204. doi: 10.1038/nclimate1352
  • Nodder SD, Chiswell SM, Northcote LC. 2016. Annual cycles of deep-ocean biogeochemical export fluxes in subtropical and Subantarctic waters, southwest Pacific Ocean. Journal of Geophysical Research: Oceans. 121(4):2405–2424.
  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature. 437:681–686. doi: 10.1038/nature04095
  • Parker LM, O’Connor WA, Raftos DA, Pörtner HO, Ross PM. 2015. Persistence of positive carryover effects in the Oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLoS One. 10(7):e0132276. doi: 10.1371/journal.pone.0132276
  • Parker LM, Ross PM, O’Connor WA. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology. 158:689–697. doi: 10.1007/s00227-010-1592-4
  • Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner HO. 2012. Adult exposure influencesoffspring response to ocean acidification in oysters. Global Change Biology. 18:82–92. doi: 10.1111/j.1365-2486.2011.02520.x
  • Parsons DM, Sim-Smith CJ, Cryer M, Francis MP, Hartill B, Jones EG, Le Port A, Lowe M, McKenzie J, Morrison M, Paul LJ. 2014. Snapper (Chrysophrys auratus): a review of life-history and key vulnerabilities in New Zealand. New Zealand Journal of Marine and Freshwater Research. 48:256–283. doi: 10.1080/00288330.2014.892013
  • Pecorino D, Barker MF, Dwarjanyn SA, Byrne M, Lamare MD. 2014. Impacts of near future sea surface pH and temperature conditions on fertilisation and embryonic development in Centrostephanus rodgersii from northern New Zealand and northern New South Wales, Australia. Marine Biology. 161:101–110. doi: 10.1007/s00227-013-2318-1
  • Peebles BA, Smith AM, Spencer HG. 2017. Valve microstructure and phylomineralogy of New Zealand chitons. Journal of Structural Biology. 197:250–259. doi: 10.1016/j.jsb.2016.12.002
  • Perea-Blazquez A, Davy SK, Bell JJ. 2012. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS One. e29569. doi: 10.1371/journal.pone.0029569
  • Pinkerton, MH. Forthcoming 2017. Impacts of climate change on New Zealand fisheries and aquaculture. In: Phillips BF, Pérez-Ramírez M, editors. The impacts of climate change on fisheries and aquaculture. Wiley/Blackwell.
  • Piontek J, Lunau M, Händel N, Borchard C, Wurst M, Engel A. 2010. Acidification increases microbial polysaccharide degradation in the ocean. Biogeosciences. 7:1615–1624. doi: 10.5194/bg-7-1615-2010
  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, et al. 2013. Global imprint of climate change on marine life. Nature Climate Change. 3:919–925. doi: 10.1038/nclimate1958
  • Pörtner HO. 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 132:739–761. doi: 10.1016/S1095-6433(02)00045-4
  • Pörtner HO. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologists view. Marine Ecology Progress Series. 373:203–217. doi: 10.3354/meps07768
  • Pörtner HO, Farrell AP. 2008. Physiology and climate change. Science. 322:690–692.
  • Purser A, Orejas C, Gori A, Tong R, Unnithan V, Thomsen L. 2013. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Continental Shelf Research. 54:37–51. doi: 10.1016/j.csr.2012.12.013
  • Rautenberger R, Fernandez PA, Strittmatter M, Heesch S, Cornwall CE, Hurd CL, Roleda MY. 2015. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecology and Evolution. 5(4):874–888. doi: 10.1002/ece3.1382
  • Richards ZT, O'Leary MJ. 2015. The coralline algal cascades of Tallon Island (Jalan) fringing reef, NW Australia. Coral Reefs. 34:595. doi: 10.1007/s00338-015-1262-6
  • Riebesell U. 2004. Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography. 60(4):719–729. doi: 10.1007/s10872-004-5764-z
  • Riebesell U, Körtzinger A, Oschlies A. 2009. Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences. 106(49):20602–20609. doi: 10.1073/pnas.0813291106
  • Ries JB, Cohen AL, McCorkle DC. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 37:1131–1134. doi: 10.1130/G30210A.1
  • Roberts D, Howard WR, Moy AD, Roberts JL, Trull TW, Bray SG, Hopcroft RR. 2011. Interannual pteropod variability in sediment traps deployed above and below the aragonite saturation horizon in the Subantarctic Southern Ocean. Polar Biol. 34:1739–1750. doi: 10.1007/s00300-011-1024-z
  • Roberts RD. 2001. A review of settlement cues for larval abalone (Haliotis spp). Journal of Shellfish Research. 20:571–586.
  • Robertson HA, Dowding JE, Elliott GP, Hitchmough RA, Miskelly CM, O’Donnell CF, Powlesland RG, Sagar PM, Scofield RP, Taylor GA. 2013. Conservation status of New Zealand birds, 2012. New Zealand Threat Classification Series 4. Wellington: Department of Conservation. 22 p.
  • Rodgers KL, Shears NT. 2016. Modelling kelp forest primary production using in situ photosynthesis, biomass and light measurements. Marine Ecology Progress Series. 553:67–79. doi: 10.3354/meps11801
  • Rokitta SD, Rost B. 2012. Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography. 57:607–618. doi: 10.4319/lo.2012.57.2.0607
  • Roleda MY, Boyd PW, Hurd CL. 2012. Before ocean acidification: calcifier chemistry lessons. Journal of Phycology. 48(4):840–843. doi: 10.1111/j.1529-8817.2012.01195.x
  • Roleda MY, Cornwall CE, Feng Y, McGraw CM, Smith AM, Hurd CL. 2015. Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS One. 10:e0140394. doi: 10.1371/journal.pone.0140394
  • Roleda MY, Hurd CL. 2012. Seaweed responses to ocean acidification. In: Wiencke C, Bischof K, editors. Seaweed Biology, Ecological Studies 219. Springer-Verlag. p. 407–431.
  • Roleda MY, Morris JN, McGraw CM, Hurd CL. 2012. Ocean acidification and seaweed reproduction: increased CO2 ammeliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biology. 18:854–864. doi: 10.1111/j.1365-2486.2011.02594.x
  • Sabine CL, Feely RA, Millero FJ, Dickson AG, Langdon C, Mecking S, Greeley D. 2008. Decadal changes in Pacific carbon. Journal of Geophysical Research. 113:C07021. doi: 10.1029/2007JC004577
  • Sánchez JA. 2005. Systematics of the bubblegum corals (Cnidaria: Octocorallia: Paragorgiidae) with description of new species from New Zealand and the eastern Pacific. Zootaxa. 1014:1–72. doi: 10.11646/zootaxa.1014.1.1
  • Schiel DR, Foster MS. 2006. The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annual Review of Ecology, Evolution, and Systematics. 37:343–372. doi: 10.1146/annurev.ecolsys.37.091305.110251
  • Seafood New Zealand, Export Statistics for December. 2016. http://www.seafood.org.nz/publications/export-information/export-statistics.
  • Secretariat of the Convention on Biological Diversity. 2014. An updated synthesis of the impacts of ocean acidification on marine biodiversity. In Hennige S, Roberts JM, Williamson P, editors. (Montreal, Technical Series no. 75). 99 p.
  • Shears NT, Babcock RC. 2007. Quantitative description of mainland New Zealand’s shallow subtidal reef communities. Science for Conservation 280. Wellington: Science & Technical Publishing, Department of Conservation. 21 p.
  • Shi D, Xu Y, Morel FMM. 2009. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences. 6:1199–1207. doi: 10.5194/bg-6-1199-2009
  • Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY. 2011. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biology Letters. 7:917–920. doi: 10.1098/rsbl.2011.0293
  • Smith AM. 2009. Bryozoans as southern sentinels of ocean acidification: a major role for a minor phylum. Marine and Freshwater Research. 605:475–482. doi: 10.1071/MF08321
  • Smith AM, Berman J, Key MM, Winter DJ. 2013. Not all sponges will thrive in a high-CO2 ocean: review of the mineralogy of calcifying sponges. Palaeogeography Palaeoclimatology Palaeoecology. 392:463–472. doi: 10.1016/j.palaeo.2013.10.004
  • Smith AM, Byrne M, Clark DE, Lamare MD, Winter DJ. 2016. Risk and resilience: variations in magnesium in echinoid skeletal calcite. Marine Ecology Progress Series. 561:1–16. doi: 10.3354/meps11908
  • Smith AM, Garden CJ. 2013. Being a bimineralic bryozoan in an acidifying ocean. In: Bryozoan studies 2010. Berlin: Springer; p. 327–337.
  • Smith AM, Key MM Jr, Gordon DP. 2006. Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth-Science Reviews. 78:287–306. doi: 10.1016/j.earscirev.2006.06.001
  • Smith AM, Nelson CS, Danaher PJ. 1992. Dissolution behavior of bryozoan sediments: taphonomic implications for non-tropical carbonates. Palaeogeography Palaeoclimatology Palaeoecology. 93:213–226. doi: 10.1016/0031-0182(92)90098-P
  • Smith AM, Nelson CS, Spencer HG. 1998. Skeletal mineralogy of New Zealand bryozoans. Marine Geology. 151:27–46. doi: 10.1016/S0025-3227(98)00055-3
  • Smith AM, Riedi MA, Winter DJ. 2013. Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Marine Biology. 160:2281–2294. doi: 10.1007/s00227-013-2210-z
  • Smith AM, Spencer HG. 2015. Skeletal mineralogy of scaphopods: an unusual uniformity. Journal of Molluscan Studies. 2015:1–5.
  • Smith AM, Sutherland JE, Kregting L, Farr TJ, Winter DJ. 2012. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny. Phytochemistry. 81:97–108. doi: 10.1016/j.phytochem.2012.06.003
  • Smith AM, Wolfe K, Byrne M. 2012. Argonauta at risk: dissolution and carbonate mineralogy of egg cases. Proceedings of the 12th International Coral Reef Symposium, James Cook University. ICRS2012_8A_1. http://www.icrs2012.com/.
  • Statistics New Zealand. 2010. Fish monetary stock account 1996–2009. Wellington: Statistics New Zealand. ISSN 1177-5440 (online), 63 p.
  • Takahashi T, Sutherland SC, Chipman DW, Goddard JG, Ho C, Newberger T, Sweeney C, Munro DR. 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry. 164:95–125. doi: 10.1016/j.marchem.2014.06.004
  • Tatters AO, Roleda MY, Schnetzer A, Fu F, Hurd CL, Boyd PW, Caron DA, Lie AA, Hoffmann LJ, Hutchins DA. 2013. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Phil Trans R Soc B. 368(1627):20120437. doi: 10.1098/rstb.2012.0437
  • Thresher RE, Guinotte JM, Matear RJ, Hobday AJ. 2015. Options for managing impacts of climate change on a deep-sea community. Nature Climate Change. 5:635–639. doi: 10.1038/nclimate2611
  • Thomsen J, Haynert K, Wegner K, Melzner F. 2015. Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences Discussions. 12:1543–1571. doi: 10.5194/bgd-12-1543-2015
  • Thomsen J, Melzner F. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology. 157:2667–2676. doi: 10.1007/s00227-010-1527-0
  • Tittensor DP, Baco AR, Hall-Spencer JM, Orr JC, Rogers AD. 2010. Seamounts as refugia from ocean acidification for cold-water stony corals. Marine Ecology – An Evolutionary Perspective. 31:212–225. doi: 10.1111/j.1439-0485.2010.00393.x
  • Tracey DM, Anderson OF, Naylor JR, Comps. 2011. A guide to common deepsea invertebrates in New Zealand waters. (New Zealand Aquatic Environment and Biodiversity report no. 86). 317 p.
  • Tracey D, Bostock H, Currie K, Mikaloff-Fletcher S, Williams M, Hadfield M, Neil H, Guy C, Cummings V. 2013. The potential impact of ocean acidification on deep-sea corals and fisheries habitat in New Zealand waters. (New Zealand Aquatic Environment and Biodiversity report no. 117). 101 p. Manuscript 2695 ISBN 978-0-478-42099-9.
  • Tracey D, Gammon M, Marriott P, Cummings V, Davy S. 2016. Live deepwater coral experiments phase 2. Final research report for the NZ Ministry of Primary Industries on project ZBD2014-01.
  • Tracey DM, Rowden AA, Mackay KA, Compton T. 2011. Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Marine Ecology Progress Series. 430:1–22. doi: 10.3354/meps09164
  • Turley C, Blackford J, Widdicombe S, Lowe D, Nightingale P D, Rees AP. 2006. Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. Avoiding Dangerous Climate Change. 8:65–70.
  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Rose SK. 2011. The representative concentration pathways: An overview. Climatic Change. 109:5–31. doi: 10.1007/s10584-011-0148-z
  • Waldbusser GG, Bergschneider H, Green MA. 2010. Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Marine Ecology Progress Series. 417:171–182.
  • Waldbusser GG, Hales B, Haley BA. 2016. Calcium carbonate saturation state: on myths and this or that stories. ICES Journal of Marine Science. 73:563–568. doi: 10.1093/icesjms/fsv174
  • Waldbusser GG, Gray MW, Hales B, Langdon CJ, Haley BA, Gimenez I, Smith SR, Brunner EL, Hutchinson G. 2016. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61:1969–1983. doi: 10.1002/lno.10348
  • Wolfe K, Smith AM, Trimby P, Byrne M. 2012. Vulnerability of the paper nautilus (Argonauta nodosa) shell to a climate-change ocean: potential for extinction by dissolution. The Biological Bulletin. 223 (2):236–244. doi: 10.1086/BBLv223n2p236
  • Zeldis J, Swales A, Currie K, Safi K, Nodder S, Depree S, Elliott F, Pritchard M, Gall M, O’Callaghan J, et al. 2015. Firth of THAMES water quality and ecosystem health – data report. (Waikato Regional Council Technical report: TR 2015/23). http://www.waikatoregion.govt.nz/tr201523/
  • Ziveri P, de Bernardi B, Baumann KH, Stoll HM, Mortyn PG. 2007. Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea Research II. 54:659–675. doi: 10.1016/j.dsr2.2007.01.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.