574
Views
11
CrossRef citations to date
0
Altmetric
Research articles

Otolith microchemistry indicates regional phylopatry in the larval phase of an amphidromous fish (Gobiomorphus hubbsi)

, ORCID Icon &
Pages 398-408 | Received 21 Sep 2017, Accepted 21 Dec 2017, Published online: 15 Jan 2018

References

  • Bell KNI. 1999. An overview of goby-fry fisheries. Naga, the ICLARM Quarterly. 22:30–36.
  • Campana SE. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series. 188:263–297. doi: 10.3354/meps188263
  • Crandall ED, Taffel JR, Barber PH. 2010. High gene flow due to pelagic larval dispersal among South Pacific archipelagos in two amphidromous gastropods (Neritomorpha: Neritidae). Heredity. 104:563–572. doi: 10.1038/hdy.2009.138
  • Crook DA, Macdonald JI, O’Connor JP, Barry B. 2006. Use of otolith chemistry to examine patterns of diadromy in the threatened Australian grayling Prototroctes maraena. Journal of Fish Biology. 69:1330–1344. doi: 10.1111/j.1095-8649.2006.01191.x
  • Dennenmoser S, Schubart CD, Thiel M. 2010. High genetic variability with no apparent geographic structuring in the mtDNA of the amphidromous river shrimp Cryphiops caementarius (Decapoda: Palaemonidae) in Northern-Central Chile. Journal of Crustacean Biology. 30:762–766. doi: 10.1651/09-3273.1
  • Doubleday ZA, Harris HH, Izzo C, Gillanders BM. 2014. Strontium randomly substituting for calcium in fish otolith aragonite. Analytical Chemistry. 86:865–869. doi: 10.1021/ac4034278
  • Eggins S, Kinsley LPJ, Shelley JMG. 1998. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Applied Surface Science. 127–129:278–286. doi: 10.1016/S0169-4332(97)00643-0
  • Elsdon TS, Gillanders BM. 2004. Fish otolith chemistry influenced by exposure to multiple environmental variables. Journal of Experimental Marine Biology and Ecology. 313:269–284. doi: 10.1016/j.jembe.2004.08.010
  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: An Annual Review. 46:297–330.
  • Feutry P, Keith P, Pécheyran C, Claverie F, Robinet T. 2011. Evidence of diadromy in the French Polynesian Kuhlia malo (Teleostei: Percoidei) inferred from otolith microchemistry analysis. Ecology of Freshwater Fish. 20:636–645. doi: 10.1111/j.1600-0633.2011.00514.x
  • Goodman JM, Dunn NR, Ravenscroft PJ, Allibone RM, Boubee JAT, David BO, Griffiths M, Ling N, Hitchmough RA, Rolfe JR. 2014. Conservation status of New Zealand freshwater fish, 2013. New Zealand threat classification series 7. Wellington: Department of Conservation. 12 p.
  • Heath RA. 1985. A review of the physical oceanography of the seas around New Zealand – 1982. New Zealand Journal of Marine and Freshwater Research. 19:79–124. doi: 10.1080/00288330.1985.9516077
  • Hicks AS, Closs GP, Swearer SE. 2010. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations. Journal of Experimental Marine Biology and Ecology. 394:86–97. doi: 10.1016/j.jembe.2010.07.018
  • Hicks AS, Jarvis MG, David BO, Waters JM, Norman MD, Closs GP. 2017. Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: the importance of local recruitment and habitat requirements. Marine and Freshwater Research. 68:2315–2323. doi: 10.1071/MF16387
  • Hogan JD, McIntyre PB, Blum MJ, Gilliam JF, Bickford N. 2014. Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology. 95:2397–2408. doi: 10.1890/13-0576.1
  • Hughes JM, Schmidt DJ, Macdonald JI, Huey JA, Crook DA. 2014. Low interbasin connectivity in a facultatively diadromous fish: evidence from genetics and otolith chemistry. Molecular Ecology. 23:1000–1013. doi: 10.1111/mec.12661
  • Jarvis MG, Closs GP. 2015. Larval drift of amphidromous Gobiomorphus spp. in a New Zealand coastal stream: a critical spatial and temporal window for protection. New Zealand Journal of Marine and Freshwater Research. 49:439–447. doi: 10.1080/00288330.2015.1072569
  • Jarvis MG, Harland HA, Warburton ML, Closs GP. 2017. The spawning and early life-history of the New Zealand endemic amphidromous Eleotrid, bluegill bully (Gobiomorphus hubbsi). New Zealand Journal of Marine and Freshwater Research. doi:10.1080/00288330.2017.1330760.
  • Jochum KP, Scholz D, Stoll B, Weis U, Wilson SA, Yang Q, Schwalb A, Börner N, Jacob DE, Andreae MO. 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chemical Geology. 318–319:31–44. doi: 10.1016/j.chemgeo.2012.05.009
  • Kopf SM, Humphries P, Watts RJ. 2014. Ontogeny of critical and prolonged swimming performance for the larvae of six Australian freshwater fish species. Journal of Fish Biology. 84:1820–1841. doi: 10.1111/jfb.12399
  • Leathwick JR, Elith J, Rowe D, Julian K. 2009. Robust planning for restoring diadromous fish species in New Zealand's lowland rivers and streams. New Zealand Journal of Marine and Freshwater Research. 43:659–671. doi: 10.1080/00288330909510032
  • Lord C, Lorion J, Dettai A, Watanabe S, Tsukamoto K, Cruaud C, Keith P. 2012. From endemism to widespread distribution: phylogeography of three amphidromous Sicyopterus species (Teleostei: Gobioidei: Sicydiinae). Marine Ecology Progress Series. 455:269–285. doi: 10.3354/meps09617
  • Macdonald JI, Shelley JMG, Crook DA. 2008. A method for improving the estimation of natal chemical signatures in otoliths. Transactions of the American Fisheries Society. 137:1674–1682. doi: 10.1577/T07-249.1
  • McCarter N. 1994. A key to some larval fish from New Zealand fresh water. Hamilton: NIWA Ecosystems. NIWA Ecosystem Publication 10.
  • McDowall RM. 1995. Seasonal pulses in migrations of New Zealand diadromous fish and the potential impacts of river mouth closure. New Zealand Journal of Marine and Freshwater Research. 29:517–526. doi: 10.1080/00288330.1995.9516684
  • McDowall RM. 2000. Biogeography of the New Zealand torrentfish, Cheimarrichthys fosteri (Teleostei: Pinguipedidae): a distribution driven mostly by ecology and behaviour. Environmental Biology of Fishes. 58:119–131. doi: 10.1023/A:1007666014842
  • McDowall RM. 2007. On amphidromy, a distinct form of diadromy in aquatic organisms. Fish and Fisheries. 8:1–13. doi: 10.1111/j.1467-2979.2007.00232.x
  • McDowall RM. 2010a. Why be amphidromous: expatrial dispersal and the place of source and sink population dynamics? Reviews in Fish Biology and Fisheries. 20:87–100. doi: 10.1007/s11160-009-9125-2
  • McDowall RM. 2010b. New Zealand freshwater fishes: an historical and ecological biogeography. New York: Springer.
  • Miles NG, Walsh CT, Butler G, Ueda H, West RJ. 2013. Australian diadromous fishes – challenges and solutions for understanding migrations in the 21st century. Marine and Freshwater Research. 65:1–13.
  • Nickols KJ, White JW, Largier JL, Gaylord B. 2015. Marine population connectivity: reconciling large-scale dispersal and high self-retention. The American Naturalist. 185:196–211. doi: 10.1086/679503
  • NIWA. 2013. New Zealand freshwater fish database. [accessed 2013 Jun 14]. http://nzffdms.niwa.co.nz.
  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry. 26:2508–2518. doi: 10.1039/c1ja10172b
  • R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Russ A, Santos SR, Muir C. 2010. Genetic population structure of an anchialine shrimp, Metabetaeus iohena (Crustacea: Alpheidae), in the Hawaiian Islands. Revista de biología tropical. 58:159–170.
  • Russo RE, Mao X, Liu H, Gonzalez J, Mao SS. 2002. Laser ablation in analytical chemistry-a review. Talanta. 57:425–451. doi: 10.1016/S0039-9140(02)00053-X
  • Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis GL, Sheehy MS, Standish JD, Ben-Tzvi O, Warner RR. 2005. Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Marine Ecology Progress Series. 297:273–281. doi: 10.3354/meps297273
  • Schmidt DJ, Crook DA, O’Connor JP, Hughes JM. 2011. Genetic analysis of threatened Australian grayling Prototroctes maraena suggests recruitment to coastal rivers from an unstructured marine larval source population. Journal of Fish Biology. 78:98–111. doi: 10.1111/j.1095-8649.2010.02844.x
  • Slarkin M. 1985. Gene flow in natural populations. Annual Review of Ecology and Systematics. 16:393–430. doi: 10.1146/annurev.es.16.110185.002141
  • Sorensen PW, Hobson KA. 2005. Stable isotope analysis of amphidromous Hawaiian gobies suggests their larvae spend a substantial period of time in freshwater river plumes. Environmental Biology of Fishes. 74:31–42. doi: 10.1007/s10641-005-3212-6
  • Stevens MI, Hicks BJ. 2009. Mitochondrial DNA reveals monophyly of New Zealand’s Gobiomorphus (Teleostei: Eleotridae) amongst a morphological complex. Evolutionary Ecology Research. 11:109–123.
  • Sturrock AM, Hunter E, Milton JA EIMF, Johnson RC, Waring CP, Trueman CN, Leder E. 2015. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution. 6:806–816. doi: 10.1111/2041-210X.12381
  • Sturrock AM, Trueman CN, Darnaude AM, Hunter E. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology. 81:766–795. doi: 10.1111/j.1095-8649.2012.03372.x
  • Thomas ORB, Ganio K, Roberts BR, Swearer SE. 2017. Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics. 9:239–249. doi: 10.1039/C6MT00189K
  • Thresher RE. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research. 43:165–204. doi: 10.1016/S0165-7836(99)00072-7
  • Thuesen PA, Ebner BC, Larson HL, Keith P, Silcock RM, Prince J, Russell DJ. 2011. Amphidromy links a newly documented fish community of continental Australian streams to oceanic islands of the West Pacific. PLoS One. 6:e26685. doi:10.1371/JOURNAL.PONE.0026685.
  • Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York (NY): Springer.
  • Walter RP, Hogan JD, Blum MK, Gagne RB, Hain EF, Gilliam JF, McIntyre PB. 2012. Climate change and conservation of endemic amphidromous fishes in Hawaiian streams. Endangered Species Research. 16:261–272. doi: 10.3354/esr00404
  • Walther BD, Limburg KE. 2012. The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology. 81:796–825. doi: 10.1111/j.1095-8649.2012.03371.x
  • Warburton M, Reid M, Stirling CH, Closs GP. 2017. Validation of depth-profiling LA-ICP-MS in otolith applications. Canadian Journal of Fisheries and Aquatic Sciences. 74:572–581. doi: 10.1139/cjfas-2016-0063
  • Waters JM, Dijkstra LH, Wallis GP. 2000. Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal? Molecular Ecology. 9:1815–1821. doi: 10.1046/j.1365-294x.2000.01082.x
  • Waters JM, Wallis GP. 2001. Cladogenesis and loss of the marine life-history phase in freshwater galaxiid fishes (Osmeriformes: Galaxiidae). Evolution. 55:587–597. doi: 10.1554/0014-3820(2001)055[0587:CALOTM]2.0.CO;2
  • Winemiller KO, Rose KA. 1993. Why do most fish produce so many tiny offspring? The American Naturalist. 142:585–603. doi: 10.1086/285559
  • Woodhead J, Eggins S, Hergt J, Shelley M, Kemp R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology. 209:121–135. doi: 10.1016/j.chemgeo.2004.04.026
  • Woodhead J, Hellstrom J, Paton C, Hergt J, Greig A, Maas R. 2008. A guide to depth profiling and imaging applications of LA-ICP-MS. In: Sylvester P, editor. Laser ablation ICP-MS in the earth sciences: current practices and outstanding issues. Quebec: Mineralogical Association of Canada; p. 135–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.