2,987
Views
5
CrossRef citations to date
0
Altmetric
Rapid Communication

FHR, HTGR, and MSR Pebble-Bed Reactors with Multiple Pebble Sizes for Fuel Management and Coolant Cleanup

&
Pages 748-754 | Received 18 Nov 2018, Accepted 20 Jan 2019, Published online: 01 Mar 2019

References

  • C. FORSBERG and P. F. PETERSON, “Basis for Fluoride-Salt-Cooled High-Temperature Reactors with Nuclear Air-Brayton Combined Cycles and Firebrick Resistance-Heated Energy Storage,” Nucl. Technol., 196, 13 (Oct. 2016); https://doi.org/10.13182/NT16-28.
  • C. ANDREADES et al., “Design Summary of the Mark-I Pebble-Bed, Fluoride Salt–Cooled, High-Temperature Reactor Commercial Power Plant,” Nucl. Technol., 195, 223 (Sep. 2016); https://doi.org/10.13182/NT16-2.
  • M. MOTA et al., “Binary Spherical Particle Mixed Beds: Porosity and Permeability Relationship Measurement,” Trans. Filt. Soc., 1, 4, 101 (2001).
  • R. P. DIAS et al., “Particulate Binary Mixtures: Dependence of Packing Porosity on Particle Size Ratio,” Ind. Eng. Chem. Res., 43, 7912 (2004); https://doi.org/10.1021/ie040048b.
  • A. C. KADAK and M. Z. BAZANT, “Pebble Flow Experiments for Pebble Bed Reactors,” 2nd Int. Topl. Mtg. High-Temperature Reactor Technology, Bejing, China, September 22–24, 2004.
  • C. H. RYCROFT et al., “Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor,” Phys. Rev. E, 74, 021306 (2006); https://doi.org/10.1103/PhysRevE.74.021306.
  • Y. GAN, M. KAMLAH, and J. REIMAN, “Computer Simulation of Packing Structure in Pebble Beds,” Fusion Eng. Des., 85, 1782 (2010); https://doi.org/10.1016/j.fusengdes.2010.05.042.
  • M. AUFIERO and M. FRATONI, “Development of Multiphysics Tools for Fluoride-Cooled High-Temperature Reactors,” PHYSOR 2016, Sun Valley, Idaho, May 1–5, 2016.
  • A. JAIN, M. J. METZGER, and B. J. GLASSER, “Effect of Particle Size Distribution on Segregation in Vibrated Systems,” Powder Technol., 237, 543 (2013); https://doi.org/10.1016/j.powtec.2012.12.044.
  • C. FORSBERG et al., “Integrated FHR Technology Development: Tritium Management, Materials Testing, Salt Chemistry Control, Thermal Hydraulics and Neutronics, Associated Benchmarking and Commercial Basis,” MIT-ANP-TR-180, Massachusetts Institute of Technology (Oct. 2018).
  • C. H. MILLER et al., “Postirradiation Examination and Evaluations of Peach Bottom FTE-13,” Document 906939, GA Technologies, Inc. (Nov. 1, 1985).
  • J. T. MAKI, “NP-MHTGR Fuel Development Program Results,” INEEL/EXT-02-01268, Idaho National Engineering and Environmental Laboratory (Oct. 2002); https://doi.org/10.1044/1059-0889(2002/er01).
  • B. BOER and A. M. OUGOUAG, “Core Analysis, Design and Optimization of a Deep Burn Pebble Bed Reactor,” Physor 2010, American Nuclear Society, INL/CON-0917220 Preprint (May 2010).
  • M. W. ROSENTHAL, P. R. KASTEN, and R. B. BRIGGS, “Molten-Salt Reactors—History, Status, and Potential,” Nucl. Appl. Technol., 8, 107 (1970); https://doi.org/10.13182/NT70-A28619.
  • KENNAMETAL, “Pyrolytic Graphite Technical Data”; http://04141_KMT_Pyrolytic_Graphite_Datasheet.pdf ( current as of Nov. 18, 2018).
  • D. LeBLANC, “Molten Salt Reactors: A New Beginning for an Old Idea,” Nucl. Eng. Des., 240, 1644 (2010); https://doi.org/10.1016/j.nucengdes.2009.12.033.
  • B. R. BETZLER et al., “Two Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor,” ORNL/TM-2016/742, Oak Ridge National Laboratory (Jan. 15 2017).
  • C. W. FORSBERG et al., “Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Status, Challenges, and Path Forward,” Nucl. Technol., 197, 2, 119 (2017); https://doi.org/10.13182/NT16-101.
  • S. LAM, R. BALLNGER, and C. FORSBERG, “Modeling and Predicting Total Hydrogen Solubility in Nanoporous Carbon Materials for Advanced Molten-Salt Nuclear Systems,” J. Nucl. Mater., 511, 328 (2018); https://doi.org/10.1016/j.jnucmat.2018.09.009.
  • OAK RIDGE NATIONAL LABORATORY, Briefings (12) to U.S. Nuclear Regulatory Commission, ML17331B113—Module 1: History, Background, and Current MSR Developments through ML17331B128—Module 12: MSR Development and R&D Issues (Nov. 7–8, 2017).
  • S. T. LAM et al., “Weak and Strong Hydrogen Interactions on Porous Carbons Materials in High-Temperature Power Systems,” J. Nucl. Mater. (accepted for publication); https://doi.org/10.1016/j.jnucmat.2019.03.036.
  • D. F. WILLIAMS, L. M. TOTH, and K. T. CLARNO, “Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR),” ORNL/TM-2006/12, Oak Ridge National Laboratory (Mar. 2006).
  • Z. XING and E. SHWAGERAUS, “Investigation into Reactivity Feedback of FHR Designs with Alternative Coolants,” Proc. Int. Congress on Advances in Nuclear Power Plants (ICAPP 2018), Charlotte, North Carolina, April 8–11, 2018.