255
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Extension of a Level 2 PSA Event Tree Based on Results of a Probabilistic Dynamic Safety Analysis of Induced Steam Generator Tube Rupture

, &
Pages 352-362 | Received 14 Feb 2020, Accepted 05 May 2020, Published online: 12 Aug 2020

References

  • A. K. VERMA, S. AJIT, and D. R. KARANKI, “Dynamic PSA,” Reliability and Safety Engineering, Chap. 11, p. 373, Springer-Verlag, London (2016).
  • M. KLOOS et al., “MCDET, A Tool for Integrated Deterministic Probabilistic Safety Analyses,” Advanced Concepts in Nuclear Energy Risk Assessment and Management, T. ALDEMIR, Ed., World Scientific Publishing Company (2018).
  • M. KLOOS and J. PESCHKE, “Results of an IDPSA Aimed to Assess the Potential of a Thermally Induced Steam Generator Tube Rupture,” Proc. 14th Int. Probabilistic Safety Assessment and Management Conf. (PSAM14), Los Angeles, California, 2018.
  • H. AUSTREGESILO et al., “ATHLET-CD 3.1A User’s Manual,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Garching, Germany (2018).
  • M. HAGE et al., “Ergänzung der bestehenden PSA der Stufe 2 um Ereignisbaumstruktur, -quantifizierung und mitigative menschliche Handlungen,” GRS 489, Gesellschaft für Anlagen- und Reaktorsicherheit (2018) (in German).
  • “Bewertung des Unfallrisikos fortschrittlicher Druckwasserreaktoren in Deutschland,” GRS-175, Gesellschaft für Anlagen- und Reaktorsicherheit (2001) (in German).
  • C. ACOSTA and N. SIU, “Dynamic Event Trees in Accident Sequence Analysis: Application to Steam Generator Tube Rupture,” Reliab. Eng. Syst. Saf., 41, 135 (1993); https://doi.org/10.1016/0951-8320(93)90027-V.
  • C.-J. CHANG et al., “Development of Dynamic Event Tree for Steam Generator Tube Rupture of a PWR,” Proc. Int. Conf. Nuclear Engineering, San Diego, California, 1998, American Society of Mechanical Engineers (1998).
  • D. M. OSBORN et al., “Seamless Level 2/Level 3 Dynamic Probabilistic Risk Assessment Clustering,” Proc. Int. Topl. Mtg. Probabilistic Safety Assessment and Analysis (PSA 2013), Columbia, South Carolina, September 22–27, 2013, American Nuclear Society (2013).
  • M. PRASAD et al., “Simulation Based Dynamic Event Tree Analysis,” Proc. Int. Topl. Mtg. Probabilistic Safety Assessment and Analysis (PSA 2019), Charleston, South Carolina, April 28–May 3, 2019, American Nuclear Society (2019).
  • J. PESCHKE, et al., “Methodische Weiterentwicklungen und Anwendungen zur probabilistischen Dynamikanalyse,” GRS-520, Gesellschaft für Anlagen- und Reaktorsicherheit (2018) (in German).
  • D. MANDELLI et al., “Mutual Integration of Classical and Dynamic PRA,” Proc. Int. Topl. Mtg. Probabilistic Safety Assessment and Analysis (PSA 2019), Charleston, South Carolina, April 28–May 3, 2019, American Nuclear Society (2019).
  • C. PICOCO et al., “Integration of Recoveries into Dynamic Event Trees: A Case Study,” Proc. Int. Topl. Mtg. Probabilistic Safety Assessment and Analysis (PSA 2019), Charleston, South Carolina, April 28–May 3, 2019, American Nuclear Society (2019).
  • K. S. HSUEH and A. MOSLEH, “The Development and Application of the Accident Dynamic Simulator for Dynamic Probabilistic Risk Assessment of Nuclear Power Plants,” Reliab. Eng. Syst. Saf., 52, 297 (1996); https://doi.org/10.1016/0951-8320(95)00140-9.
  • A. HAKOBYAN et al., “Dynamic Generation of Accident Progression Event Trees,” Nucl. Eng. Des., 238, 3457 (2008); https://doi.org/10.1016/j.nucengdes.2008.08.005.
  • Y. H. J. CHANG and A. MOSLEH, “Cognitive Modeling and Dynamic Probabilistic Simulation of Operating Crew Response to Complex System Accidents Part 1–5: Dynamic Probabilistic Simulation of the IDAC Model,” Reliab. Eng. Syst. Saf., 92, 997 (2007); https://doi.org/10.1016/j.ress.2006.05.014.
  • EMRALD website, Idaho National Laboratory; https://emrald.inl.gov/SitePages/Overview.aspx ( current as of Apr. 4, 2020).
  • C. L. SMITH et al., “India-United States Collaboration on Advanced Dynamic Reliability Modeling,” Proc. Int. Topl. Mtg. Probabilistic Safety Assessment and Analysis (PSA 2019), Charleston, South Carolina, April 28–May 3, 2019, American Nuclear Society (2019).
  • D. ANDERS et al., “RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7,” INL/EXT-12-25924, Idaho National Laboratory (2012).
  • C. RABITI et al., “RAVEN, A New Software for Dynamic Risk Analysis,” Proc. 12th Int. Conf. Probabilistic Safety Assessment and Management (PSAM12), Honolulu, Hawaii, June 22–27, 2014.
  • M. KLOOS and J. PESCHKE, “MCDET: A Probabilistic Dynamics Method Combining Monte Carlo Simulation with the Discrete Dynamic Event Tree Approach,” Nucl. Sci. Eng., 153, 137 (2006); https://doi.org/10.13182/NSE06-A2601.
  • J. M. GRIESMEYER and L. N. SMITH, “A Reference Manual for the EVENT Progression Analysis Code (EVNTRE),” NUREG/CR-5174, U.S. Nuclear Regulatory Commission (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.