274
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Preventing Reverse Engineering of Critical Industrial Data with DIOD

ORCID Icon, &
Pages 37-52 | Received 10 Dec 2021, Accepted 12 Jul 2022, Published online: 07 Sep 2022

References

  • H. P. LUHN, “A Business Intelligence System,” IBM J. Res. Dev., 2, 4, 314 (Apr. 2010); https://doi.org/10.1147/rd.24.0314.
  • H. J. WATSON and B. H. WIXOM, “The Current State of Business Intelligence,” Computer, 40, 9, 96 (Sep. 2007); https://doi.org/10.1109/MC.2007.331.
  • “Analytics at Work: Q&A with Tom Davenport—InformationWeek”; https://informationweek.com/software/information-management/analytics-at-work-qanda-with-tom-davenport/d/d-id/1085869 ( accessed June 29, 2021).
  • H. WANG et al., “Moisture-Carryover Performance Optimization Using Physics-Constrained Machine Learning,” Prog. Nucl. Energy, 135, 103691 (May 2021); https://doi.org/10.1016/J.PNUCENE.2021.103691.
  • J. A. FARBER and D. G. COLE, “Detecting Loss-of-Coolant Accidents Without Accident-Specific Data,” Prog. Nucl. Energy, 128, 103469 (Oct. 2020); https://doi.org/10.1016/J.PNUCENE.2020.103469.
  • F. ZHANG and J. B. COBLE, “Robust Localized Cyber-Attack Detection for Key Equipment in Nuclear Power Plants,” Prog. Nucl. Energy, 128, 103446 (Oct. 2020); https://doi.org/10.1016/J.PNUCENE.2020.103446.
  • M. T. BENSI and K. M. GROTH, “On the Value of Data Fusion and Model Integration for Generating Real-Time Risk Insights for Nuclear Power Reactors,” Prog. Nucl. Energy, 129, 103497 (Nov. 2020); https://doi.org/10.1016/J.PNUCENE.2020.103497.
  • A. L. BOONE, I. V. FLOROS, and S. A. JOHNSON, “Redacting Proprietary Information at the Initial Public Offering,” J. Financ. Econ., 120, 1, 102 (Apr. 2016); https://doi.org/10.1016/j.jfineco.2015.06.016.
  • O. ABBOSH and K. BISSELL, “Securing the Digital Economy: Reinventing the Internet | Accenture” (2019); https://www.accenture.com/us-en/insights/cybersecurity/_acnmedia/Thought-Leadership-Assets/PDF/Accenture-Securing-the-Digital-Economy-Reinventing-the-Internet-for-Trust.pdf#zoom=50 (accessed Jan. 26, 2021).
  • “General Data Protection Regulation (GDPR)—Official Legal Text”; https://gdpr-info.eu/ ( accessed July 21, 2021).
  • “California Consumer Privacy Act (CCPA) | State of California—Department of Justice—Office of the Attorney General”; https://oag.ca.gov/privacy/ccpa ( accessed July 21, 2021).
  • Y. LI, E. BERTINO, and H. S. ABDEL-KHALIK, “Effectiveness of Model-Based Defenses for Digitally Controlled Industrial Systems: Nuclear Reactor Case Study,” Nucl. Technol., 206, 82 (2020); https://doi.org/10.1080/00295450.2019.1626170.
  • S. E. OTTO and C. W. ROWLEY, “Linearly-Recurrent Autoencoder Networks for Learning Dynamics,” SIAM J. Appl. Dyn. Syst., 18, 1, 558 (Dec. 2017); http://arxiv.org/abs/1712.01378 (accessed May 5, 2021).
  • A. MARDT et al., “VAMPnets for Deep Learning of Molecular Kinetics,” Nat. Commun., 9, 5 (Dec. 2018); https://doi.org/10.1038/s41467-017-02388-1.
  • B. LUSCH, J. N. KUTZ, and S. L. BRUNTON, “Deep Learning for Universal Linear Embeddings of Nonlinear Dynamics,” Nat. Commun., 9, 4950 (Dec. 2018); https://doi.org/10.1038/s41467-018-07210-0.
  • Q. LI et al., “Extended Dynamic Mode Decomposition with Dictionary Learning: A Data-Driven Adaptive Spectral Decomposition of the Koopman Operator,” Chaos, 27, 10, 103111 (July 2017); https://doi.org/10.1063/1.4993854.
  • S. H. RUDY et al., “Data-Driven Discovery of Partial Differential Equations,” Sci. Adv., 3, 4, e1602614 (Apr. 2017); https://doi.org/10.1126/sciadv.1602614.
  • S. L. BRUNTON et al., “Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems,” PNAS, 113, 15, 3932 (Apr. 2016); https://doi.org/10.1073/pnas.1517384113.
  • K. MURALIDHAR and R. SARATHY, “Data Shuffling—A New Masking Approach for Numerical Data,” Manage. Sci., 52, 5, 658 (May 1, 2006); https://doi.org/10.1287/mnsc.1050.0503.
  • “What’s This Data Masking All About Anyway?” DLT; https://www.dlt.com/blog/2015/03/19/whats-data-masking ( accessed Jan. 20, 2021).
  • C. DWORK et al., “The Algorithmic Foundations of Differential Privacy,” Found. Trends Theor. Comput. Sci., 9, 211 (2014); https://doi.org/10.1561/0400000042.
  • F. KERSCHBAUM, “Privacy-Preserving Computation,” Privacy Technologies and Policy, p. 41, Springer (2014); https://doi.org/10.1007/978-3-642-54069-1_3.
  • A. OPPERMANN et al., “Secure Cloud Computing: Communication Protocol for Multithreaded Fully Homomorphic Encryption for Remote Data Processing,” Proc. 15th IEEE Int. Symp. Parallel and Distributed Processing with Applications and 16th IEEE Int. Conf. Ubiquitous Computing and Communications (ISPA/IUCC 2017), Guangzhou, China, December 12–15, 2017, p. 503 (May 2018); https://doi.org/10.1109/ISPA/IUCC.2017.00084.
  • I. J. GOODFELLOW, J. SHLENS, and C. SZEGEDY, “Explaining and Harnessing Adversarial Examples,” Proc. 3rd Int. Conf. Learning Representations, San Diego, California, May 7–9, 2015.
  • “Differential Privacy for Census Data Explained,” National Conference of State Legislatures; https://www.ncsl.org/research/redistricting/differential-privacy-for-census-data-explained.aspx ( accessed May 30, 2022).
  • C. T. KENNY et al., “The Use of Differential Privacy for Census Data and Its Impact on Redistricting: The Case of the 2020 U.S. Census,” Sci. Adv., 7, 41 (Oct. 2021); https://doi.org/10.1126/SCIADV.ABK3283.
  • Y. LI et al., “Real-Time Monitoring for Detection of Adversarial Subtle Process Variations,” Nucl. Sci. Eng., 196, 5, 544 (2022); https://doi.org/10.1080/00295639.2021.1997041.
  • A. SUNDARAM, Y. LI, and H. ABDEL-KHALIK, “Denoising Algorithm for Subtle Anomaly Detection,” Nucl. Technol., 208, 9, 1365 (2022); https://doi.org/10.1080/00295450.2022.2027147.
  • C. DWORK et al., “Generalization in Adaptive Data Analysis and Holdout Reuse,” Proc. Annual Conf. Neural Information Processing Systems, Montreal, Quebec, Canada, December 7–12, 2015, p. 2350 (2015); https://doi.org/10.48550/arxiv.1506.02629.
  • A. SUNDARAM, H. ABDEL-KHALIK, and A. AL RASHDAN, “Deceptive Infusion of Data: A Novel Data Masking Paradigm for High-Valued Systems,” Nucl. Sci. Eng., 196, 911 (2022); https://doi.org/10.1080/00295639.2022.2043542.
  • N. CARRARA and J. ERNST, “On the Upper Limit of Separability” (2017); https://doi.org/10.48550/arXiv.1708.09449.
  • A. SUNDARAM, H. S. ABDEL-KHALIK, and A. AL RASHDAN, “Deceptive Infusion of Data (DIOD) for Nuclear Reactors,” Trans. Am. Nucl. Soc., 125, 1, 264 (2021); https://doi.org/10.13182/T125-37178.
  • K. WILLCOX and J. PERAIRE, “Balanced Model Reduction via the Proper Orthogonal Decomposition,” AIAA J., 40, 11, 2323 (2002); https://doi.org/10.2514/2.1570.
  • Y. BANG, H. S. ABDEL-KHALIK, and J. M. HITE, “Hybrid Reduced Order Modeling Applied to Nonlinear Models,” Int. J. Numer. Methods Eng., 91, 9, 929 (2012); https://doi.org/10.1002/nme.4298.
  • Y. BANG and H. S. ABDEL-KHALIK, “Reduced Order Modeling for Multi-Physics Problems,” Trans. Am. Nucl. Soc., 107, 586 (2012).
  • D. J. LUCIA, P. S. BERAN, and W. A. SILVA, “Reduced-Order Modeling: New Approaches for Computational Physics,” Prog. Aerosp. Sci., 40, 1–2, 51 (Feb 1, 2004); https://doi.org/10.1016/j.paerosci.2003.12.001.
  • J. WILLARD et al., “Integrating Physics-Based Modeling with Machine Learning: A Survey,” 1, 34, Association for Computing Machinery (2020); https://doi.org/10.1145/1122445.1122456.
  • S. ARRIDGE et al., “Solving Inverse Problems Using Data-Driven Models,” Acta Numer., 28, 1 (May 2019); https://doi.org/10.1017/S0962492919000059.
  • J. MORSHED and J. J. KALUARACHCHI, “Parameter Estimation Using Artificial Neural Network and Genetic Algorithm for Free-Product Migration and Recovery,” Water Resour. Res., 34, 5, 1101 (May 1998); https://doi.org/10.1029/98WR00006.
  • I. J. GOODFELLOW et al., “Generative Adversarial Nets,” Proc. Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, Canada, December 8–14, 2014; https://doi.org/10.48550/arXiv.1406.2661.
  • H. LI et al., “NETT: Solving Inverse Problems with Deep Neural Networks,” Inverse Prob., 36, 6, 065005 (June 2020); https://doi.org/10.1088/1361-6420/ab6d57.
  • J. ADLER and O. ÖKTEM, “Solving Ill-Posed Inverse Problems Using Iterative Deep Neural Networks,” Inverse Prob., 33, 12, 124007 (Nov. 2017); https://doi.org/10.1088/1361-6420/aa9581.
  • F. KNOLL et al., “Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues,” IEEE Signal Process. Mag., 37, 1, 128 (Jan. 2020); https://doi.org/10.1109/MSP.2019.2950640.
  • G. ONGIE et al., “Deep Learning Techniques for Inverse Problems in Imaging,” IEEE J. Sel. Areas Inf. Theory, 1, 1, 39 (2020); https://doi.org/10.48550/arXiv.2005.06001.
  • M. RAISSI, P. PERDIKARIS, and G. E. KARNIADAKIS, “Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations,” J. Comput. Phys., 378, 686 (2019); https://doi.org/10.1016/j.jcp.2018.10.045.
  • A. S. ISKHAKOV and N. T. DINH, “Physics-Integrated Machine Learning: Embedding a Neural Network in the Navier-Stokes Equations. Part I,” Phys. Lett. A, 406 (2020); https://doi.org/10.1016/j.physleta.2021.127456.
  • A. YAZDANI et al., “Systems Biology Informed Deep Learning for Inferring Parameters and Hidden Dynamics,” PLoS Comput. Biol., 16, 11, e1007575 (2020); https://doi.org/10.1371/journal.pcbi.1007575.
  • J. BONGARD and H. LIPSON, “Automated Reverse Engineering of Nonlinear Dynamical Systems,” PNAS, 104, 24, 9943 (2007); https://doi.org/10.1073/pnas.0609476104.
  • A. F. VILLAVERDE and J. R. BANGA, “Reverse Engineering and Identification in Systems Biology: Strategies, Perspectives and Challenges,” J. R. Soc. Interface, 11, 91, 20130505 (Feb. 2014); https://doi.org/10.1098/rsif.2013.0505.
  • M. SCHMIDT and H. LIPSON, “Distilling Free-Form Natural Laws from Experimental Data,” Science, 324, 5923, 81 (2009); https://doi.org/10.1126/science.1165893.
  • M. RAISSI and G. E. KARNIADAKIS, “Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations,” J. Comput. Phys., 357, 125 (2018); https://doi.org/10.1016/j.jcp.2017.11.039.
  • M. GAVISH and D. L. DONOHO, “The Optimal Hard Threshold for Singular Values Is 4/√3,” IEEE Trans. Inf. Theory, 60, 8, 5040 (2014); https://doi.org/10.1109/TIT.2014.2323359.
  • R. VAUTARD, P. YIOU, and M. GHIL, “Singular-Spectrum Analysis: A Toolkit for Short, Noisy Chaotic Signals,” Physica D, 58, 1–4, 95 (Sep. 1992); https://doi.org/10.1016/0167-2789(92)90103-T.
  • N. GOLYANDINA and D. STEPANOV, “SSA-Based Approaches to Analysis and Forecast of Multidimensional Time Series,” Proc. 5th St. Petersburg Workshop on Simulation, Vol. 2, p. 293 (2005).
  • N. CARRARA and J. ERNST, “On the Estimation of Mutual Information,” Proc. 39th Int. Workshop Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany, June 30–July 5, 2019, Vol. 33, No. 1, p. 31 (Jan. 2020); https://doi.org/10.3390/proceedings2019033031.
  • D. CHARTE et al., “An Analysis on the Use of Autoencoders for Representation Learning: Fundamentals, Learning Task Case Studies, Explainability and Challenges,” Neurocomputing, 404, 93 (2020).
  • F. ROSENBLATT, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain 1,” Psychol. Rev., 65, 6, 19.
  • B. E. BOSER, I. M. GUYON, and V. N. VAPNIK, “A Training Algorithm for Optimal Margin Classifiers,” Proc. 5th Annual ACM Workshop on Computational Learning Theory, Pittsburgh Pennsylvania, July 27–29, 1992, p. 144 (1992); https://doi.org/10.1145/130385.130401.
  • B. C. MOORE, “Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction,” IEEE Trans. Autom. Control, 26, 1, 17 (1981); https://doi.org/10.1109/TAC.1981.1102568.
  • B. SCHÖLKOPF, A. SMOLA, and K. R. MÜLLER, “Kernel Principal Component Analysis,” Lecture Notes in Computer Science, Vol. 1327, Springer, Berlin, Heidelberg (1997); https://doi.org/10.1007/bfb0020217.
  • M. I. BELGHAZI et al., “Mutual Information Neural Estimation,” Proc. Int. Conf. Machine Learning Research, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018, Vol. 80, p. 531 (2018).
  • A. KRASKOV, H. STOEGBAUER, and P. GRASSBERGER, “Estimating Mutual Information,” Phys. Rev. E, 69, 6, 16 (May 2003); https://doi.org/10.1103/physreve.69.066138.
  • S. MEYEN, “Relation Between Classification Accuracy and Mutual Information in Equally Weighted Classification Tasks,” Master Thesis, Universität Hamburg (2016).
  • T. PAPAMARKOU et al., “Automated Detection of Corrosion in Used Nuclear Fuel Dry Storage Canisters Using Residual Neural Networks,” Nucl. Eng. Technol., 53, 2, 657 (Feb. 2021); https://doi.org/10.1016/J.NET.2020.07.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.