2,054
Views
4
CrossRef citations to date
0
Altmetric
Technical Note

Considerations for Hydride Moderator Readiness in Microreactors

ORCID Icon, , , &
Pages S136-S145 | Received 14 May 2022, Accepted 01 Sep 2022, Published online: 17 Oct 2022

References

  • “A Microreactor Program Plan for the Department of Energy,” INL/EXT-20-58191, p. 23, Idaho National Laboratory (2020).
  • G. F. BURDI, “SNAP Technology Handbook, Volume II Hydride Fuels and Claddings SNAP Technology Handbook Volume II,” p. 129, Atomics International (1964).
  • R. VAN HOUTEN, “Selected Engineering and Fabrication Aspects of Nuclear Metal Hydrides (Li, Ti, Zr, and Y), ” Nucl. Eng. Des., 31, 3, 434 (1974); https://doi.org/10.1016/0029-5493(75)90178-8.
  • G. THORNTON and A. ROTHSTEIN, “Comprehensive Technical Report General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program: Program Summary and References,” APEX-901, General Electric (1962).
  • J. B. VETRANO, “Hydrides as Neutron Moderator and Reflector Materials,” Nucl. Eng. Des., 14, 3, 390 (1971); https://doi.org/10.1016/0029-5493(70)90159-7.
  • E. C. PHILLIPS JR., “Casting Hydrides,” p. 3, U.S. Patent 3,692,888 (1969).
  • R. VAN HOUTEN, “Massive Metal Hydride Structures and Methods for Their Preparation,” U.S. Atomic Energy Commission (1967).
  • J. W. RAYMOND and H. TAKETANI, “Hydriding Process,” p. 5, U.S. Atomic Energy Commission (1965).
  • J. B. VETRANO, “Preparation of Metal Hydride Bodies by Improved Powder Metallurgy Process,” p. 7, Rockwell International Corporation (1964).
  • R. W. SULLIVAN, “Method of Making Crack-Free Zirconium Hydride,” p. 6, U.S. Department of Energy (1966).
  • J. C. MARSHALL, R. VAN HOUTEN, and W. G. BAXTER, “Yttrium Hydride Moderator Evaluation—In-Pile Thermal Stability,” General Electric Company (1962).
  • J. C. MARSHALL, R. VAN HOUTEN, and W. G. BAXTER, “1000 Hour Demonstration of Clad Yttrium Hydride as a Neutron Moderator,” Proc. American Nuclear Society 1964 Annual Mtg., p. 2, M. FERRIER, Ed. (1964).
  • R. VAN HOUTEN, “Recent Developments of Metallic Hydride Shielding Materials GEMP-518,” General Electric Company (1967).
  • R. L. BECK, “Research and Development of Metal Hydrides,” University of Denver (1960).
  • J. M. FACKELMANN, M. A. GEDWILL JR., and H. H. KRAUSE JR., “Survey of Zirconium, Yttrium, and Cerium Hydrides for Reflector Application in the GCRE,” p. 86, Battelle Memorial Institution (1960).
  • M. T. SIMNAD, “The U-ZrHx Alloy: Its Properties and Use in TRIGA Fuel,” Nucl. Eng. Des., 64, 3, 403 (1981); https://doi.org/10.1016/0029-5493(81)90135-7.
  • X. HU et al., “Handbook on the Material Properties of Yttrium Hydride for High Temperature Moderator Applications,” p. 36, Oak Ridge National Laboratory (2021).
  • A. P. SHIVPRASAD et al., “Advanced Moderator Material Handbook,” p. 66, Los Alamos National Laboratory (2020).
  • W. M. MUELLER, J. P. BLACKLEDGE, and G. G. LIBOWITZ, “Metal Hydrides,” in Metal Hydrides, W. M. MUELLER, J. P. BLACKLEDGE, and G. G. LIBOWITZ, Eds., Academic Press (1968).
  • R. GRIFFITHS, J. PRYDE, and A. RIGHINI-BRAND, “Phase Diagram and Thermodynamic Data for the Hydrogen/Vanadium System,” J. Chem. Soc., Faraday Trans. 1 F, 68, 2344 (1972); https://doi.org/10.1039/f19726802344.
  • H. OKAMOTO, ““H-Nb (Hydrogen-Niobium),” J. Phase Equilibria Diffus., 34, 2, 163 (2013); https://doi.org/10.1007/s11669-012-0165-2.
  • A. SAN-MARTIN and F. D. MANCHESTER, “The H-Ta (Hydrogen-Tantalum) System,” J. Phase Equilib., 12, 3, 332 (1991); https://doi.org/10.1007/BF02649922.
  • D. OLANDER et al., “Uranium-Zirconium Hydride Fuel Properties,” Nucl. Eng. Des., 239, 8, 1406 (2009); https://doi.org/10.1016/j.nucengdes.2009.04.001.
  • “Reduced Enrichment for Research and Test Reactors Program, Currently Qualified Fuels,” Argonne National Laboratory; https://www.rertr.anl.gov/QualFuel.html (current as of May 14, 2022).
  • G. E. WILSON and B. E. BOYACK, “The Role of the PIRT Process in Experiments, Code Development and Code Applications Associated with Reactor Safety Analysis,” Nucl. Eng. Des., 186, 1, 23 (1998); https://doi.org/10.1016/S0029-5493(98)00216-7.
  • B. BOYACK, “Phenomenon Identification Ranking Tables (PIRTs) for Power Oscillations Without Scram in Boiling Water Reactors Containing High Burnup Fuel,” NUREG/CR-6743, LA-UR-00-5079, U.S. Nuclear Regulatory Commission (2001).
  • D. C. CRAWFORD et al., “An Approach to Fuel Development and Qualification,” J. Nucl. Mater., 371, 1, 232 (2007); https://doi.org/10.1016/j.jnucmat.2007.05.029.
  • W. J. CARMACK et al., “Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development,” Nucl. Eng. Des., 313, 177 (2017); https://doi.org/10.1016/j.nucengdes.2016.11.024.
  • X. HU et al., “Fabrication of Yttrium Hydride for High-Temperature Moderator Application,” J. Nucl. Mater., 539, 152335 (2020); https://doi.org/10.1016/j.jnucmat.2020.152335.
  • C. L. HUFFINE, “Chapter 13—Fabrication of Hydrides,” in Metal Hydrides, W. M. MUELLER, J. P. BLACKLEDGE, and G. G. LIBOWITZ, Eds., pp. 675–747, Academic Press (1968).
  • C. N. TAYLOR, “Hydrogen and Its Detection in Fusion and Fission Nuclear Materials—A Review,” J. Nucl. Mater., 558, 153396 (2022); https://doi.org/10.1016/j.jnucmat.2021.153396.
  • K. A. TERRANI, “Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges,” J. Nucl. Mater., 501, 13 (2018).
  • Y. YAMAMOTO et al., “Report on Exploration of New FeCrAl Heat Variants with Improved Properties,” Oak Ridge National Laboratory (2019).
  • Y. YAMAMOTO et al., “Optimized Properties on Base Metal and Thin-Walled Tube of Generation II ATF FeCrAl,” Oak Ridge National Laboratory (2015).
  • K. G. FIELD, K. C. LITTRELL, and S. A. BRIGGS, “Precipitation of α′ in Neutron Irradiated Commercial FeCrAl Alloys,” Scr. Mater., 142, 41 (2018); https://doi.org/10.1016/j.scriptamat.2017.08.022.
  • M. N. GUSSEV, E. CAKMAK, and K. G. FIELD, “Impact of Neutron Irradiation on Mechanical Performance of FeCrAl Alloy Laser-Beam Weldments,” J. Nucl. Mater., 504, 221 (2018); https://doi.org/10.1016/j.jnucmat.2018.03.036.
  • N. R. BROWN et al., “Mechanical Failure of Fresh Nuclear Grade Iron-Chromium-Aluminum (FeCrAl) Cladding Under Simulated Hot Zero Power Reactivity Initiated Accident Conditions,” J. Nucl. Mater., 539, 152352 (2020); https://doi.org/10.1016/j.jnucmat.2020.152352.
  • B. GARRISON et al., “Burst Characteristics of Advanced Accident-Tolerant FeCrAl Cladding Under Temperature Transient Testing,” J. Nucl. Mater., 560, 153488 (2022); https://doi.org/10.1016/j.jnucmat.2021.153488.
  • M. N. CINBIZ et al., “Transient Mechanical Test Development for Accident Tolerant Cladding Candidates to Simulate PCMI-like Conditions,” Oak Ridge National Laboratory (2017).
  • M. N. CINBIZ et al., “Report on Design and Failure Limits of SiC/SiC and FeCrAl ATF Cladding Concepts Under RIA,” Oak Ridge National Laboratory (2018).
  • S. J. PAPROCKI, E. S. HODGE, and H. D. HANES, “Cladding of Yttrium Hydride with Iron-Chromium-Aluminum by Gas-Pressure Bonding,” Battelle Memorial Institute (1960).