611
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

High-Fidelity Modeling and Experiments to Inform Safety Analysis Codes for Heat Pipe Microreactors

ORCID Icon, , , , , , , & show all
Pages 1592-1616 | Received 01 Aug 2022, Accepted 10 Feb 2023, Published online: 17 Apr 2023

References

  • J. KENNEDY, “Special Purpose Application Reactors: Systems Integration Decision Support,” INL/EXT-18-51369, Idaho National Laboratory (2018).
  • R. TESTONI, A. BERSANO, and S. SEGANTIN, “Review of Nuclear Microreactors: Status, Potentialities and Challenges,” Prog. Nucl. Energy, 138, 103822 (2021); https://doi.org/10.1016/j.pnucene.2021.103822.
  • C. MATTHEWS et al., “Coupled Multiphysics Simulations of Heat Pipe Microreactors Using DireWolf,” Nucl. Technol., 207, 7, 1142 (2021); https://doi.org/10.1080/00295450.2021.1906474.
  • H. JOUHARA et al., “Heat Pipe Based Systems—Advances and Applications,” Energy, 128, 729 (2017); https://doi.org/10.1016/j.energy.2017.04.028.
  • A. FAGHRI, “Heat Pipes: Review, Opportunities and Challenges,” Fron. Heat Pipes, 5, 1 (2014); https://doi.org/10.5098/fhp.5.1.
  • D. SHAVER and A. TENTNER, “Initial Evaluation of Nek-2P for Modeling of Liquid Metal Heat Pipes,” ANL/NSE-19/42, Argonne National Laboratory (2019).
  • A. B. SOLOMON et al., “Numerical Analysis of a Screen Mesh Wick Heat Pipe with Cu/Water Nanofluid,” Int. J. Heat Mass Transfer, 75, 523 (2014); https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.007.
  • R. RANJAN et al., “A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects,” Int. J. Heat Mass Transfer, 54, 1–3, 153 (2011); https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.057.
  • J. E. HANSEL et al., “Sockeye: A One-Dimensional, Two-Phase, Compressible Flow Heat Pipe Application,” Nucl. Technol., 207, 1096 (2021); https://doi.org/10.1080/00295450.2020.1861879.
  • K. K. BODLA, J. Y. MURTHY, and S. V. GARIMELLA, “Direct Simulation of Thermal Transport Through Sintered Wick Microstructures,” J. Heat Transfer, 134, 1, 012602 (2012); https://doi.org/10.1115/1.4004804.
  • K. K. BODLA, J. Y. MURTHY, and S. V. GARIMELLA, “Evaporation Analysis in Sintered Wick Microstructures,” Int. J. Heat Mass Transfer, 61, 1, 729 (2013); https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.038.
  • R. KEMPERS, D. EWING, and C. Y. CHING, “Effect of Number of Mesh Layers and Fluid Loading on the Performance of Screen Mesh Wicked Heat Pipes,” Applied Thermal Engineering, 26, 589 (2006); https://doi.org/10.1016/j.applthermaleng.2005.07.004.
  • X. CHEN et al., “Investigation of Interface Profiles in Meshed Wicks and Related Evaporation Characteristics,” Int. J. Thermal Sciences, 177, July 2021, 107522 (2022); https://doi.org/10.1016/j.ijthermalsci.2022.107522.
  • R. KEMPERS et al., “Characterization of Evaporator and Condenser Thermal Resistances of a Screen Mesh Wicked Heat Pipe,” Int. J. Heat Mass Transfer, 51, 25–26, 6039 (2008); https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.001.
  • D. KHRUSTALEV and A. FAGHRI, “Heat Transfer During Evaporation on Capillary-Grooved Structures of Heat Pipes,” J. Heat Transfer, 117, 3, 740 (1995); https://doi.org/10.1115/1.2822638.
  • C. W. HIRT and B. NICHOLS, “Journal of Computational Physics,” J. Heat Transfer, 39, 1, 201 (1981).
  • P.-H. HUANG et al., “Design of a Sodium Heat Pipe Experimental Setup for the Special Purpose Nuclear Reactor,” presented at 2021 ANS Virtual Annu. Mtg., June 14–16, 2021.
  • T. AHN et al., “Experimental Study on Startup Characteristics of a Sodium-Filled Heat Pipe, Using In-House High-Resolution and High-Speed Radiation-Based Imaging System,” Proc. NURETH-19, Brussels, Belgium (2022).
  • P. SABHARWALL et al., “Integrated Modeling and Simulation Capability for Full Scale Multi-Physics Simulation and Visualization of Micro Reactor Concept,” INL/EXT-19-55159, Idaho National Laboratory (2019).
  • Z. TIAN et al., “Experimental Investigation on the Heat Transfer Performance of High-Temperature Potassium Heat Pipe for Nuclear Reactor,” Nucl. Eng. Des., 378, 111182 (2021); https://doi.org/10.1016/j.nucengdes.2021.111182.
  • C. WANG et al., “Experimental Study on Startup Performance of High Temperature Potassium Heat Pipe at Different Inclination Angles and Input Powers for Nuclear Reactor Application,” Annals of Nuclear Energy, 136, 107051 (2020); https://doi.org/10.1016/j.anucene.2019.107051.
  • L. H. R. CISTERNA, F. H. MILANEZ, and M. B. H. MANTELLI, “Prediction of Geyser Boiling Limit for High Temperature Two-Phase Thermosyphons,” Int. J. Heat Mass Transfer, 165, 120656 (2021); https://doi.org/10.1016/j.ijheatmasstransfer.2020.120656.
  • “ Solidworks,” Dassault Systems SolidWorks Corp.; https://www.solidworks.com.
  • B. CH NOOKARAJU et al., “Experimental and Transient Thermal Analysis of Screen Mesh Wick Heat Pipe,” Materials Today: Proc., 46, Part 19, 9920.
  • W. S. CHANG, “Porosity and Effective Thermal Conductivity of Wire Screens,” J. Heat Transfer, 112, 1, 5 (1990); https://doi.org/10.1115/1.2910365.
  • J. VAN SANT and J. MALET, “Thermal Conductivity of Some Heat Pipe Wicks,” Letters Heat Mass Transfer, 2, 199 (1975); https://doi.org/10.1016/0094-4548(75)90021-1.
  • “Ansys Fluent,” Ansys Inc.; https://www.ansys.com.
  • J. U. BRACKBILL, D. B. KOTHE, and C. ZEMACH, “A Continuum Method for Modeling Surface Tension,” J. Computational Physics, 100, 2, 335 (1992); https://doi.org/10.1016/0021-9991(92)90240-Y.
  • E. MERZARI et al., “Numerical Simulation of Free-Surface Vortices,” Nucl. Technol., 165, 3, 313 (2009); https://doi.org/10.13182/NT09-A4104.
  • J. W. TAYLOR and S. D. FORD, “Solid Metal-Liquid Metal Interaction Studies. Part II. Contact Angle Relationships for Sodium on Solids,” Atomic Energy Research Establishment (1955).
  • M. BADER and C. A. BUSSE, “Wetting by Sodium at High Temperatures in Pure Vapour Atmosphere,” J. Nucl. Mater., 67, 295 (1977); https://doi.org/10.1016/0022-3115(77)90102-7.
  • E. HODKIN, D. MORTIMER, and M. NICHOLAS, “The Wetting of Some Ferrous Materials by Sodium,” in Liquid Alkali Metals, pp. 167–170, Thomas Telford Publishing (1973).
  • B. LONGSON and J. PRESCOTT, “Some Experiment on the Wetting of Stainless Steel, Nickel and Iron in Liquid Sodium,” UK Atomic Energy Agency, Risley Engineering and Materials Laboratory (1973).
  • J. K. FINK and L. LEIBOWITZ, “Thermodynamic and Transport Properties of Sodium Liquid and Vapor,” ANL/RE-95/2-94649, Argonne National Laboratory (1995).
  • J. E. HANSEL et al., “Sockeye: A 1-D Heat Pipe Modeling Tool,” INL/EXT-19-55742, Idaho National Laboratory (2019).
  • R. W. SCHRAGE, A Theoretical Study of Interphase Mass Transfer, Columbia University Press (1953).
  • T. WEN et al., “Fundamentals and Applications of CFD Technology on Analyzing Falling Film Heat and Mass Exchangers: A Comprehensive Review,” Applied Energy, 261, 114473 (2020); https://doi.org/10.1016/j.apenergy.2019.114473.
  • E. OZAHI, M. Y. GUNDOGDU, and M. Ö. CARPINLIOGLU, “A Modification on Ergun’s Correlation for Use in Cylindrical Packed Beds with Mon-spherical Particles,” Adv. Powder Technol., 19, 4, 369 (2008); https://doi.org/10.1163/156855208X314985.
  • C. G. TOIT, P. J. V. LOGGERENBERG, and H. J. VERMAAK, “An Evaluation of Selected Friction Factor Correlations and Results for the Pressure Drop Through Random and Structured Packed Beds of Uniform Spheres,” Nucl. Eng. Des., 379, February, 111213 (2021); https://doi.org/10.1016/j.nucengdes.2021.111213.
  • P. C. CARMAN, “Permeability of Saturated Sands, Soils and Clays,” J. Agric. Sci., 29, 2, 262 (1939); https://doi.org/10.1017/S0021859600051789.
  • S. ERGUN, “Fluid Flow Through Packed Columns,” Chem. Eng. Prog., 48, 89 (1952).
  • B. EISFELD and K. SCHNITZLEIN, “The Influence of Confining Walls on the Pressure Drop in Packed Beds,” Chem. Eng. Sci., 56, 14, 4321 (2001); https://doi.org/10.1016/S0009-2509(00)00533-9.
  • W. REICHELT, “Zur Berechnung des Druckverlustes einphasig durchströmter Kugel-und Zylinderschüttungen,” Chem. Ing. Tech., 44, 18, 1068 (1972); https://doi.org/10.1002/cite.330441806.
  • R. N. LYON, Liquid-Metals Handbook, Committee on the Basic Properties of Liquid Metals, Office of Naval Research, United States (1952).
  • S. AOKI, “A Consideration on the Heat Transfer in Liquid Metal,” Bulletin of the Tokyo Institute of Technology, 54, 63 (1963).
  • E. SKUPINSKI, J. TORTEL, and L. VAUTREY, “Determination Des Coefficients de Convection d’un Alliage Sodium-Potassium dans un Tube Circulaire,” Int. J. Heat Mass Transfer, 8, 6, 937 (1965); https://doi.org/10.1016/0017-9310(65)90077-3.
  • W. PFRANG and D. STRUWE, Assessment of Correlations for Heat Transfer to the Coolant for Heavy Liquid Metal Cooled Core Designs, Vol. 7352, Citeseer (2007).
  • J. P. HARTNETT and T. F. IRVINE, JR., “Nusselt Values for Estimating Turbulent Liquid Metal Heat Transfer in Noncircular Ducts,” AlChE J., 3, 3, 313 (1957); https://doi.org/10.1002/aic.690030305.
  • K. MIKITYUK, “Heat Transfer to Liquid Metal: Review of Data and Correlations for Tube Bundles,” Nucl. Eng. Des., 239, 4, 680 (2009); https://doi.org/10.1016/j.nucengdes.2008.12.014.
  • A. FAGHRI, Heat Pipe Science and Technology, Global Digital Press (1995).
  • B. ZOHURI, Heat Pipe Design and Technology, Springer (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.