272
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of Corrosion Behavior of Various Fe- and Ni-Based Alloys in Molten Li2BeF4 (FLiBe)

ORCID Icon, , , & ORCID Icon
Pages 391-408 | Received 05 Apr 2023, Accepted 18 Jun 2023, Published online: 24 Jul 2023

References

  • M. W. ROSENTHAL, P. R. KASTEN, and R. B. BRIGGS, “Molten-Salt Reactors—History, Status, and Potential,” Nucl. Appl. Technol., 8, 107 (1970); https://doi.org/10.13182/NT70-A28619.
  • H. E. MCCOY et al., “Materials for Molten Salt Reactors,” ORNL/TM-2511, Oak Ridge National Laboratory (1969).
  • J. ZHANG et al., “Redox Potential Control in Molten Salt Systems for Corrosion Mitigation,” Corros. Sci., 144, 44 (2018); https://doi.org/10.1016/j.corsci.2018.08.035.
  • F.-Y. OUYANG et al., “Effect of Moisture on Corrosion of Ni-Based Alloys in Molten Alkali Fluoride FLiNaK Salt Environments,” J. Nucl. Mater., 437, 201 (2013); https://doi.org/10.1016/j.jnucmat.2013.02.021.
  • W. H. DONIGER et al., “Investigation of Impurity Driven Corrosion Behavior in Molten 2LiF-BeF2 Salt,” Corros. Sci., 174, 108823 (2020); https://doi.org/10.1016/j.corsci.2020.108823.
  • K. M. SANKAR and P. M. SINGH, “Effect of Oxide Impurities on the Corrosion Behavior of Structural Materials in Molten LiF-NaF-KF,” Corros. Sci., 206, 110473 (2022); https://doi.org/10.1016/j.corsci.2022.110473.
  • V. IGNATIEV and A. SURENKOV, “Alloys Compatibility in Molten Salt Fluorides: Kurchatov Institute Related Experience,” J. Nucl. Mater., 441, 592 (2013); https://doi.org/10.1016/j.jnucmat.2013.05.007.
  • J. R. KEISER, “Compatibility Studies of Potential Molten-Salt Breeder Reactor Materials in Molten Fluoride Salts,” ORNL-TM-5783, Oak Ridge National Laboratory (1977).
  • J. T. VENARD, “Tensile and Creep Properties of INOR-8 for the Molten-Salt Reactor Experiment,” ORNL-TM-1017, Oak Ridge National Laboratory (1965).
  • J. R. KEISER, J. H. DEVAN, and D. L. MANNING, “The Corrosion Resistance of Type 316 Stainless Steel to Li2BeF4,” ORNL-TM-5782, Oak Ridge National Laboratory (1977).
  • G. ZHENG et al., “Corrosion of 316 Stainless Steel in High Temperature Molten Li2BeF4 (FLiBe) Salt,” J. Nucl. Mater., 461, 143 (2015); https://doi.org/10.1016/j.jnucmat.2015.03.004.
  • G. ZHENG et al., “Corrosion-Induced Microstructural Developments in 316 Stainless Steel During Exposure to Molten Li2BeF4 (FLiBe) Salt,” J. Nucl. Mater., 482, 147 (2016); https://doi.org/10.1016/j.jnucmat.2016.10.023.
  • K. J. CHAN, “Carbon Effects on Corrosion in Molten Fluoride Salt,” PhD Thesis, Georgia Institute of Technology, School of Materials Science and Engineering (2020).
  • K. M. SANKAR and P. M. SINGH, “Effect of Li Metal Addition on Corrosion Control of Hastelloy N and Stainless Steel 316H in Molten LiF-NaF-KF,” J. Nucl. Mater., 555, 153098 (2021); https://doi.org/10.1016/j.jnucmat.2021.153098.
  • B. C. KELLEHER, “Purification and Chemical Control of Molten Li2BeF4 for a Fluoride Salt Cooled Reactor,” PhD Thesis, University of Wisconsin at Madison, Department of Engineering Physics (2015).
  • J. R. KEISER et al., “Interaction of Beryllium with 316H Stainless Steel in Molten Li2BeF4 (FLiBe),” J. Nucl. Mater., 565, 153698 (2022); https://doi.org/10.1016/j.jnucmat.2022.153698.
  • M. S. SOHAL et al., “Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties,” INL/EXT-10-18297, Idaho National Laboratory (2010); https://doi.org/10.2172/980801.
  • J. W. KOGER, “Alloy Compatibility with LiF-BeF₂ Salts Containing ThF₄ and UF₄,” ORNL-TM-4286, Oak Ridge National Laboratory (1972); https://doi.org/10.2172/4381831.
  • L. C. OLSON et al., “Materials Corrosion in Molten LiF-NaF-KF Salt,” J. Fluorine Chem., 130, 67 (2009); https://doi.org/10.1016/j.jfluchem.2008.05.008.
  • M. KONDO et al., “High Performance Corrosion Resistance of Nickel-Based Alloys in Molten Salt FLiBe,” Fusion Sci. Technol., 56, 190 (2009); https://doi.org/10.13182/FST09-A8900.
  • H. YIN et al., “Effect of CrF3 on the Corrosion Behaviour of Hastelloy-N and 316L Stainless Steel Alloys in FLiNaK Molten Salt,” Corros. Sci., 131, 355 (2018); https://doi.org/10.1016/j.corsci.2017.12.008.
  • X. YANG et al., “Corrosion Behavior of GH3535 Alloy in Molten LiF-BeF2 Salt,” Corros. Sci., 199, 110168 (2022); https://doi.org/10.1016/j.corsci.2022.110168.
  • M. LIU et al., “Investigation on Corrosion Behavior of Ni-Based Alloys in Molten Fluoride Salt Using Synchrotron Radiation Techniques,” J. Nucl. Mater., 440, 124 (2013); https://doi.org/10.1016/j.jnucmat.2013.04.056.
  • K. J. CHAN and P. M. SINGH, “Corrosion Behavior of Pre-Carburized Hastelloy N, Haynes 244, Haynes 230, and Incoloy 800H in Molten FLiNaK,” Nucl. Technol., 206, 1751 (2020); https://doi.org/10.1080/00295450.2020.1809311.
  • Y. LIU et al., “Corrosion of Cr in Molten Salts with Different Fluoroacidity in the Presence of CrF3,” Corros. Sci., 169, 108636 (2020); https://doi.org/10.1016/j.corsci.2020.108636.
  • J. SERP et al., “The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives,” Prog. Nucl. Energy, 77, 308 (2014).
  • J. H. SHAFFER, “Preparation of and Handling of Salt Mixtures for the Molten Salt Reactor Experiment,” ORNL-4616, Oak Ridge National Laboratory (Jan. 1971).
  • B. PINT et al., “FLiBe Capsule Testing of 316H,” ORNL/SPR-2021/2138, Oak Ridge National Laboratory (2021); https://doi.org/10.2172/1818669.
  • R. E. GEHLBACH and H. E. MCCOY JR., “Phase Instability in Hastelloy N,” Proc. Int. Symp. on Structural Stability in Superalloys, 1968, 346 (1968); https://doi.org/10.7449/1968/Superalloys_1968_346_366.
  • C. ZHANG et al., “Effects of High-Temperature Aging on Precipitation and Corrosion Behavior of a Ni-Cr-Mo-Based Hastelloy C276 Superalloy,” J. of Mater. Eng and Perform, 29, 2026 (2020); https://doi.org/10.1007/s11665-020-04723-y.
  • L. OLSON et al., “Intergranular Corrosion of High Temperature Alloys in Molten Fluoride Salts,” Mater. High Temp., 27, 145 (2010); https://doi.org/10.3184/096034010X12743509428336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.