106
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Pore Forming Agent–Assisted Fabrication of Porous Platinum Vent Frits and Their Suitability Evaluation for Radioisotope Power Sources

ORCID Icon, , , , &
Pages 486-500 | Received 06 Dec 2022, Accepted 27 Jun 2023, Published online: 04 Aug 2023

References

  • G. R. SCHMIDT, Radioisotopes—Applications in Physical Sciences, p. 419, InTech Open Publishers, London (2011); http://dx.doi.org/10.5772/858.
  • A. SANCHEZ-TORRES, Radioisotopes—Applications in Physical Sciences, p. 457, InTech Open Publishers, London (2011); http://dx.doi.org/10.5772/858.
  • D. FREIS et al., “Research in Support of European Radioisotope Power System Development at the European Commission’s Joint Research Centre in Karlsruhe,” ATW-Int. J. Nucl. Power, 65, 4, 198 (2020).
  • R. E. TATE, “The Light Weight Radioisotope Heater Unit (LWRHU): A Technical Description of the Reference Design,” LA-9078-MS, Los Alamos National Laboratory (Jan. 1982); http://dx.doi.org/10.2172/5253319.
  • R. M. AMBROSI et al., “European Radioisotope Thermoelectric Generators (RTGs) and Radioisotope Heater Units (RHUs) for Space Science and Exploration,” Space Sci. Rev., 215, 55 (2019); http://dx.doi.org/10.1007/s11214-019-0623-9.
  • R. M. AMBROSI et al., “A Concept Study on Advanced Radioisotope Solid Solutions and Mixed-Oxide Fuel Forms for Future Space Nuclear Power Systems,” Nucl. Technol., 207, 6, 773 (2021); http://dx.doi.org/10.1080/00295450.2021.1888616.
  • E. J. WATKINSON et al., “Thermal Properties and Behaviour of Am-Bearing Fuel in European Space Radioisotope Power Systems,” Thermo., 1, 3, 297 (2021); http://dx.doi.org/10.3390/thermo1030020.
  • M. K. HOSSAIN et al., “Hydrogen Isotope Dissolution and Release Behavior of Rare Earth Oxides,” Fusion Sci. Technol., 76, 4, 553 (2020); http://dx.doi.org/10.1080/15361055.2020.1728173.
  • M. K. HOSSAIN et al., “A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices,” Nanomaterials, 12, 20, 3581 (2022); http://dx.doi.org/10.3390/nano12203581.
  • K. R. VEACH JR., B. R. FRISKE, and R. G. MILLER, “Re-establishment of Light-Weight Radioisotope Heater Unit Platinum-30% Rhodium Alloy Components Production at Oak Ridge National Laboratory” Proc. Nuclear and Emerging Technologies for Space (NETS-2019), Richland, Washington, February 25–28, 2019 (2019).
  • J. –. F. VIGIER et al., “Optimization of Uranium-Doped Americium Oxide Synthesis for Space Application,” Inorg. Chem., 57, 8, 4317 (2018); http://dx.doi.org/10.1021/acs.inorgchem.7b03148.
  • G. B. ULRICH, “The Metallurgical Integrity of the Frit Vent Assembly Diffusion Bond,” Y/DV-1321, Oak Ridge Y-12 Plant (Apr. 1994); http://dx.doi.org/10.2172/10186107.
  • G. B. ULRICH, “Examination of Frit Vent from Sixty Watt Heat Source Simulant Fueled Clad Vent Set,” Y/DV-1393, Oak Ridge Y-12 Plant (Nov. 1995).
  • E. A. FRANCO-FERREIRA et al., “Long Life Radioisotopic Power Sources Encapsulated in Platinum Metal Alloys-CASSINI MISSION TO STUDY SATURN AND ITS MOONS,” Platinum Met. Rev., 41, 4, 154 (1997).
  • A. KENNEDY, Powder Metallurgy, p. 31, InTech Open Publishers, London (2012); http://dx.doi.org/10.5772/33060.
  • R. MESALAM et al., “A Facile Polymeric Templating Route Towards Fabricating RTG and RHU Vent Hole Filters,” Proc. Nuclear and Emerging Technologies for Space, (NETS-2020), Knoxville, Tennessee, April 6–9, 2020 (2020).
  • G. SHEPPARD et al., “Manufacture of Porous Frit Vents Using Space Holder Methodology for Radioisotopic Space Power Systems” Proc. Characterization of Minerals, Metals, and Materials 2021, p. 201, Springer International Publishers (2021); http://dx.doi.org/10.1007/978-3-030-65493-1_19.
  • “Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air- Filter System,” F1471-93, American Society for Testing and Materials International (2017); http://dx.doi.org/10.1520/F1471-93.
  • M.-H. LEE, “Performance Assessment of HEPA Filter Against Radioactive Aerosols from Metal Cutting During Nuclear Decommissioning,” Nucl. Eng. Technol., 52, 5, 1043 (2020); http://dx.doi.org/10.1016/j.net.2019.10.017.
  • “PubChem Compound Summary for CID 5281, Stearic Acid,” National Center for Biotechnology Information, PubChem; https://pubchem.ncbi.nlm.nih.gov/compound/Stearic-acid (accessed May 28, 2023).
  • “PubChem Compound Summary for CID 985, Palmitic Acid,” National Center for Biotechnology Information, PubChem; https://pubchem.ncbi.nlm.nih.gov/compound/Palmitic-acid (accessed May 28, 2023).
  • R. L. HEWITT, W. WALLACE, and M. C. DE MALHERBE, “Plastic Deformation in Metal Powder Compaction,” Powder Metall., 17, 33, 1 (1974); http://dx.doi.org/10.1179/pom.1974.17.33.001.
  • “Properties of Nobel Gases,” LibreTexts Library; https://chem.libretexts.org/@go/page/31741 (accessed May 28, 2023).
  • F. VALLEJOS-BURGOS, F.-X. COUDERT, and K. KANEKO, “Air Separation with Graphene Mediated by Nanowindow-Rim Concerted Motion,” Nat. Commun., 9, 1812 (2018); http://dx.doi.org/10.1038/s41467-018-04224-6.
  • K. L. RUBOW, “Sintered Porous Metal HEPA Filter,” p. 1, Mott Corporation (2004); https://mottcorp.com/resource/sintered-porous-metal-high-efficiency-particulate-air-hepa-filter/ (accessed May 28, 2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.