617
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

First Experimental Demonstration of the Use of a Novel Planar Segmented HPGe Detector for Gamma Emission Tomography of Mockup Fuel Rods

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 532-541 | Received 23 Mar 2023, Accepted 10 Jul 2023, Published online: 28 Aug 2023

References

  • S. HOLCOMBE, S. JACOBSSON SVÄRD, and L. HALLSTADIUS, “A Novel Gamma Emission Tomography Instrument for Enhanced Fuel Characterization Capabilities Within the OECD Halden Reactor Project,” Ann. Nucl. Energy, 85, 837 (Nov. 2015); https://doi.org/10.1016/j.anucene.2015.06.043.
  • S. JACOBSSON SVÄRD, “A Tomographic Measurement Technique for Irradiated Nuclear Fuel Assemblies,” Doctoral Thesis, Uppsala University (2004); http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4227.
  • S. CARUSO and F. JATUFF, “Design, Development and Utilisation of a Tomography Station for γ-Ray Emission and Transmission Analyses of Light Water Reactor Spent Fuel Rods,” Prog. Nucl. Energy, 72, 49 (Apr. 2014); https://doi.org/10.1016/j.pnucene.2013.09.007.
  • S. CARUSO et al., “Nondestructive Determination of Fresh and Spent Nuclear Fuel Rod Density Distributions Through Computerised Gamma-Ray Transmission Tomography,” J. Nucl. Sci. Technol., 45, 8, 828 (Aug. 2008); https://doi.org/10.1080/18811248.2008.9711484.
  • P. JANSSON et al., “A Device for Nondestructive Experimental Determination of the Power Distribution in a Nuclear Fuel Assembly,” Nucl. Sci. Eng., 152, 1, 76 (2006); https://doi.org/10.13182/NSE06-A2565.
  • J. DIAZ et al., “X-Ray and Gamma-Ray Tomographic Imaging of Fuel Relocation Inside Sodium Fast Reactor Test Assemblies During Severe Accidents,” J. Nucl. Mater., 543, 152567 (Jan. 2021); https://doi.org/10.1016/j.jnucmat.2020.152567.
  • T. WHITE et al., “Application of Passive Gamma Emission Tomography (PGET) for the Verification of Spent Nuclear Fuel,” Proc. INMM 59th Annual Conf., Baltimore, Maryland, July 2018, Institute of Nuclear Materials Management (2018).
  • M. MAYOROV et al., “Gamma Emission Tomography for the Inspection of Spent Nuclear Fuel,” Proc. 2017 IEEE Nuclear Science Symp. and Medical Imaging Conf. (NSS/MIC), Atlanta, Georgia, October 21–28, 2017, IEEE (2017); https://doi.org/10.1109/NSSMIC.2017.8533017.
  • R. BACKHOLM et al., “Simultaneous Reconstruction of Emission and Attenuation in Passive Gamma Emission Tomography of Spent Nuclear Fuel,” Inverse Probl. Imaging, 14, 2, 317 (2020); https://doi.org/10.3934/ipi.2020014.
  • M. FANG et al., “Quantitative Imaging and Automated Fuel Pin Identification for Passive Gamma Emission Tomography,” Sci. Rep., 11, 2442 (Jan. 2021); https://doi.org/10.1038/s41598-021-82031-8.
  • P. DENDOOVEN and T. A. BUBBA, “Gamma Ray Emission Imaging in the Medical and Nuclear Safeguards Fields,” The Euroschool on Exotic Beams, Vol. VI, pp. 245–295, S. M. LENZI and D. CORTINA-GIL, Eds., Lecture Notes in Physics, Springer International Publishing, Cham (2022); https://doi.org/10.1007/978-3-031-10751-1_7.
  • R. VIRTA et al., “Improved Passive Gamma Emission Tomography Image Quality in the Central Region of Spent Nuclear Fuel,” Sci. Rep., 12, 12473 (July 2022); https://doi.org/10.1038/s41598-022-16642-0.
  • R. VIRTA, “Fuel Rod Classification from Passive Gamma Emission Tomography (PGET) of Spent Nuclear Fuel Assemblies,” ESARDA Bull., 61, 10 (Dec. 2020); https://doi.org/10.3011/ESARDA.IJNSNP.2020.8.
  • V. RATHORE et al., “Calculation of Spatial Response of a Collimated Segmented HPGe Detector for Gamma Emission Tomography by MCNP Simulations,” IEEE Trans. Nucl. Sci., 69, 714 (2022); https://doi.org/10.1109/TNS.2022.3152056.
  • P. ANDERSSON et al., “Simulation of the Response of a Segmented High-Purity Germanium Detector for Gamma Emission Tomography of Nuclear Fuel,” SN Appl. Sci., 2, 271 (Jan. 2020); https://doi.org/10.1007/s42452-020-2053-4.
  • M. CIEMAŁA et al., “Measurements of High-Energy γ-Rays with LaBr3:Ce Detectors,” Nucl. Instrum. Methods Phys. Res. Sect. A, 608, 1, 76 (Sep. 2009); https://doi.org/10.1016/j.nima.2009.06.019.
  • S. AKKOYUN et al., “AGATA—Advanced GAmma Tracking Array,” Nucl. Instrum. Methods Phys. Res. Sect. A, 668, 26 (Mar. 2012); https://doi.org/10.1016/j.nima.2011.11.081.
  • S. PASCHALIS et al., “The Performance of the Gamma-Ray Energy Tracking In-Beam Nuclear Array GRETINA,” Nucl. Instrum. Methods Phys. Res. Sect. A, 709, 44 (May 2013); https://doi.org/10.1016/j.nima.2013.01.009.
  • A. CAFFREY, “The Development and Evaluation of a Compton Camera for Imaging Spent Fuel Rod Assemblies,” PhD Thesis, University of Liverpool (2019); https://livrepository.liverpool.ac.uk/3070060.
  • E. J. RINTOUL, “Characterisation of an Electrically Cooled Planar Germanium Detector for Use in the GRI+ Compton Camera System,” PhD Thesis, University of Liverpool (2020); https://livrepository.liverpool.ac.uk/3106394/1/200777228_Nov2020.pdf.
  • V. RATHORE et al., “Experimental Evaluation of the Performance of a Novel Planar Segmented HPGe Detector for Use in Gamma Emission Tomography,” Nucl. Instrum. Methods Phys. Res. Sect. A, 1049, 168073 (Jan. 2023); https://doi.org/10.1016/j.nima.2023.168073.
  • P. JANSSON et al., “A Laboratory Device for Developing Analysis Tools and Methods for Gamma Emission Tomography of Nuclear Fuel,” Proc. 35th ESARDA Annual Mtg., Bruges, Belgium, May 27–30, 2013, European Safeguards Research & Development Association (2013); http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200707.
  • G. GILMORE, “Statistics of Counting,” Practical Gamma-Ray Spectrometry, 2nd ed., Chap. 5, pp. 101–126, Wiley, West Sussex (2011).
  • A. C. KAK and M. SLANEY, Principles of Computerized Tomographic Imaging, IEEE Press (1988).
  • S. VAN DER WALT et al., “Scikit-Image: Image Processing in Python,” PeerJ, 2, e453 (June 2014); https://doi.org/10.7717/peerj.453.
  • V. RATHORE et al., “Geometrical Optimisation of a Segmented HPGe Detector for Spectroscopic Gamma Emission Tomography—A Simulation Study,” Nucl. Instrum. Methods Phys. Res. Sect. A, 998, 165164 (2021); https://doi.org/10.1016/j.nima.2021.165164.
  • R. VIRTA et al., “Reconstructing Activity and Attenuation of a Spent Fuel Assembly from Passive Gamma Emission Tomography (PGET) Measurements,” Proc. 2020 IEEE Nuclear Science Symp. and Medical Imaging Conf. (NSS/MIC, Boston, Massachusetts,) October 31–November 7, 2020, IEEE (2020); https://doi.org/10.1109/NSS/MIC42677.2020.9507762.
  • P. ANDERSSON and S. HOLCOMBE, “A Computerized Method (UPPREC) for Quantitative Analysis of Irradiated Nuclear Fuel Assemblies with Gamma Emission Tomography at the Halden Reactor,” Ann. Nucl. Energy, 110, 88 (Dec. 2017); https://doi.org/10.1016/j.anucene.2017.06.025.