103
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fuel Melting Simulation with FRAPCON/FRAPTRAN Codes for the Power-to-Melt-and-Maneuverability Simulation Exercise and Consideration of Model Modifications

ORCID Icon
Pages 308-323 | Received 17 Oct 2022, Accepted 17 Jul 2023, Published online: 30 Aug 2023

References

  • OECD/NEA, “Second Framework for Irradiation Experiments (FIDES-II),” (2022); https://www.oecd-nea.org/jcms/pl_70867/second-framework-for-irradiation-experiments-fides-ii.
  • V. D’AMBROSI et al., “P2M Simulation Exercise on Past Fuel Melting Irradiation Experiments,” Nucl. Technol., 210, 2, 189 (2023); https://doi.org/10.1080/00295450.2023.2194270.
  • K. J. GEELHOOD et al., “FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup,” Technical Report PNNL-19418, Vol. 1 Rev. 2, Pacific Northwest National Laboratory (2015).
  • K. J. GEELHOOD et al., “FRAPTRAN 2.0: A Computer Code for the Transient Analysis of Oxide Fuel Rods,” Technical Report PNNL-19400, Vol. 1 Rev. 2, Pacific Northwest National Laboratory (2016).
  • D. D. LANNING, C. E. BEYER, and K. J. GEELHOOD, “FRAPCON-3 Updates, Including Mixed-Oxide Fuel Properties,” Technical Report PNNL11513, Pacific Northwest National Laboratory (2005).
  • D. MANARA et al., “Melting of Stoichiometric and Hyperstoichiometric Uranium Dioxide,” J. Nucl. Mat., 342, 148 (2005); http://dx.doi.org/10.1016/j.jnucmat.2005.04.002.
  • W. G. LUSCHER and K. J. GEELHOOD, “Material Property Correlations: Comparisons Between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO,” PNNL-19417 NUREG/CR-7024 Pacific Northwest National Laboratory (2011).
  • B. MIHAILA, M. STAN, and J. CRAPPS, “Impact of Thermal Conductivity Models on the Coupling of Heat Transport and Oxygen Diffusion in UO2 Nuclear Fuel Elements,” J. Nucl. Mater., 430, 221 (2012); http://dx.doi.org/10.1016/j.jnucmat.2012.07.007.
  • L. LEIBOWITZ et al., “Enthalpy of Liquid Uranium Dioxide to 3500 K,” J. Nucl. Mat., 39, 115 (1971); http://dx.doi.org/10.1016/0022-3115(71)90190-5.
  • K. J. GEELHOOD and W. G. LUSCHER, “FRAPTRAN-2.0: Integral Assessment,” PNNL-19400 Vol. 2, Rev. 2, Pacific Northwest National Laboratory (2016).
  • L. ANDREW, “Thermomechanical Analysis of Innovative Nuclear Fuel Pin Designs,” MS Thesis, Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (2010).
  • V. D’AMBROSI et al., “Presentation of the xM3 Test Case of the P2M Simulation Exercise and Modeling with the Fuel Performance Code ALCYONE,” Nucl. Technol., 210, 2, 285 (2013); https://doi.org/10.1080/00295450.2023.2253660.
  • G. BONNY, “Presentation of the HBC4 Test Case of the P2M Simulation Exercise and Modeling with the Fuel Performance Code TRANSURANUS,” submitted to ANS Nuclear Technology.
  • A. TOPTAN, D. J. KROPACZEK, and M. N. AVRAMOVA, “Gap Conductance Modeling II: Optimized Model for UO2-Zircaloy Interfaces,” Nucl. Eng. Des., 355, 110289 (2019); http://dx.doi.org/10.1016/j.nucengdes.2019.110289.
  • I. CLIFFORD, C. COZZO, and H. FERROUKHI, “First Assessments of the Dynamic Gap Conductance Model in TRACE,” Proc. 18th Int. Topl. Mtg. on Nuclear Reactor Thermal Hydraulics (NURETH-18), p. 4624, American Nuclear Society (2019).
  • K. J. GEELHOOD, W. G. LUSCHER, and C. E. BEYER, “FRAPCON-4.0: Integral Assessment,” Vol. 2. Pacific Northwest National Laboratory (2015).
  • G. KHVOSTOV, “Modeling of Central Void Formation in LWR Fuel Pellets due to High-Temperature Restructuring,” Nucl. Eng. Technol., 50, 1190 (2018); http://dx.doi.org/10.1016/j.net.2018.07.003.
  • T. ARIMA, “Melting Point of Thermal Conductivity of UO2- ZrO2 Solid Solution: Molecular Dynamics Simulation,” J. COmput. Chem. Jpn., 14–4, 97 (2015); http://dx.doi.org/10.2477/jccj.2015-0007.
  • W. K. KIM, J. H. SHIM, and M. KAVIANY, “Thermophysical Properties of Liquid UO2, ZrO2 and Corium by Molecular Dynamics and Predictive Models,” Trans. Korean Nuclear Society Autumn Mtg., Gyeongju, Korea, October 26–28, 2016 (2016).
  • G. PASTORE et al., “Modeling Fission Gas Behavior with the BISON Fuel Performance Code,” presented at the EHPG Mtg., Lillehammer, Norway, September 24–29, 2017 ( 2017).
  • L. C. BERNARD, J. L. JACOUD, and P. VESCO, “An Efficient Model for the Analysis of Fission Gas Release,” J. Nucl. Mat., 302, 125 (2002); http://dx.doi.org/10.1016/S0022-3115(02)00793-6.
  • A. GERMAIN et al., “Modeling High Burnup Fuel Thermochemistry, Fission Product Release and Fuel Melting During the VERDON 1 and RT6 Tests,” J. Nucl. Mat., 561, 153527 (2022); http://dx.doi.org/10.1016/j.jnucmat.2022.153527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.