525
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Natural Analogue Studies in Support of Post-Closure Safety Assessment of Deep Geological Disposal

ORCID Icon, , , &
Pages 1535-1548 | Received 26 Apr 2023, Accepted 19 Jul 2023, Published online: 30 Aug 2023

References

  • T. A. KURNIAWAN et al., “Technological Solutions for Long-Term Storage of Partially Used Nuclear Waste: A Critical Review,” Ann. Nucl. Energy, 166, 108736 (2022); https://doi.org/10.1016/j.anucene.2021.108736.
  • T. S. NGUYEN et al., “Hydro-Mechanical Behavior of an Argillaceous Limestone Considered as a Potential Host Formation for Radioactive Waste Disposal,” J. Rock Mech. Geotech. Eng., 10, 6, 1063 (2018); https://doi.org/10.1016/j.jrmge.2018.03.010.
  • “The Safety Case and Safety Assessment for the Disposal of Radioactive Waste,” IAEA Safety Standards Series No. SSG-23, International Atomic Energy Agency (2012).
  • M. FAYEK and J. BROWN, “Natural and Anthropogenic Analogues for High-Level Nuclear Waste Disposal Repositories: A Review,” Can. Mineral., 59, 1, 287 (2021); https://doi.org/10.3749/canmin.2000051.
  • E. SASAO et al., “An Overview of a Natural Analogue Study of the Tono Uranium Deposit, Central Japan,” Geochem. Explor. Environ. Anal., 6, 1, 5 (2006); https://doi.org/10.1144/1467-7873/05-084.
  • R. METCALFE et al., “A System Model for the Origin and Evolution of the Tono Uranium Deposit, Japan,” Geochem. Explor. Environ. Anal., 6, 1, 13 (2006); https://doi.org/10.1144/1467-7873/05-080.
  • F. AKAGAWA et al., “Redox Front Formation in Fractured Crystalline Rock: An Analogue of Matrix Diffusion in an Oxidizing Front Along Water-Conducting Fractures,” Geochem. Explor. Environ. Anal., 6, 1, 49 (2006); https://doi.org/10.1144/1467-7873/05-085.
  • W. R. ALEXANDER et al., “Natural Immobilization Processes Aid the Understanding of Long-Term Evolution of Deep Geological Radioactive Waste Repositories,” Geochem. Explor. Environ. Anal., 6, 1, 3 (2006); https://doi.org/10.1144/1467-7873/05-100.
  • A. M. SIMMONS and J. S. STUCKLESS, “Analogues to Features and Processes of a High-Level Radioactive Waste Repository Proposed for Yucca Mountain, Nevada,” U.S. Geological Survey Professional Paper 1779, p. 195, U.S. Geological Survey (2010).
  • S. J. COOK et al., “The Empirical Basis for Modelling Glacial Erosion Rates,” Nat. Commun., 11, 1, 759 (2020); https://doi.org/10.1038/s41467-020-14583-8.
  • F. HERMAN et al., “The Impact of Glaciers on Mountain Erosion,” Nat. Rev. Earth Environ., 2, 6, 422 (2021); https://doi.org/10.1038/s43017-021-00165-9.
  • M. N. KOPPES and D. R. MONTGOMERY, “The Relative Efficacy of Fluvial and Glacial Erosion Over Modern to Orogenic Timescales,” Nat. Geosci., 2, 9, 644 (2009); https://doi.org/10.1038/ngeo616.
  • B. HALLET, L. HUNTER, and J. BOGEN, “Rates of Erosion and Sediment Evacuation by Glaciers: A Review of Field Data and Their Implications,” Global Planet. Change, 12, 1, 213 (1996); https://doi.org/10.1016/0921-8181(95)00021-6.
  • Z. LI and T. S. NGUYEN, “Thermo-Mechanical Regime of the Greenland Ice Sheet and Erosion Potential of the Crystalline Bedrock,” Minerals, 11, 2, 120 (2021); https://doi.org/10.3390/min11020120.
  • C. LILJEDAHL et al., “The Greenland Analogue Project: Final Report,” Technical Report TE-14-13, Nuclear Waste Management Organization (2016).
  • T. BIRCHALL, K. SENGER, and R. SWARBRICK, “Naturally Occurring Underpressure—A Global Review,” Pet. Geosci., 28, 2, petgeo2021–051 (2022); https://doi.org/10.1144/petgeo2021-051.
  • J. CRAMER and J. A. T. SMELLIE, “Final Report of the AECL/SKB Cigar Lake Analog Study,” Swedish Nuclear Fuel and Waste Management Company (1994).
  • M. PAGEL, F. RUHLMANN, and P. BRUNETON, “The Cigar Lake Uranium Deposit, Saskatchewan, Canada,” Can. J. Earth Sci., 30, 4, 651 (1993); https://doi.org/10.1139/e93-053.
  • G. L. CUMMING and D. KRSTIC, “The Age of Unconformity-Related Uranium Mineralization in the Athabasca Basin, Northern Saskatchewan,” Can. J. Earth Sci., 29, 8, 1623 (1992); https://doi.org/10.1139/e92-128.
  • M. FAYEK et al., “O and Pb Isotopic Analyses of Uranium Minerals by Ion Microprobe and U-Pb Ages from the Cigar Lake Deposit,” Chem. Geol., 185, 3, 205 (2002); https://doi.org/10.1016/S0009-2541(01)00401-6.
  • H. MOZAFARISHAMSI, “In Situ Production and Migration of 129I in the Cigar Lake Natural Analogue,” Canadian Nuclear Safety Commission (2023).
  • B. M. SHABAGA et al., “Mineralogy, Geochronology, and Genesis of the Andrew Lake Uranium Deposit, Thelon Basin, Nunavut, Canada,” Can. J. Earth Sci., 54, 8, 850 (2017); https://doi.org/10.1139/cjes-2017-0024.
  • A. GRARE et al., “The Contact Uranium Prospect, Kiggavik Project, Nunavut (Canada): Tectonic History, Structural Constraints and Timing of Mineralization,” Ore Geol. Rev., 93, 141 (2018); https://doi.org/10.1016/j.oregeorev.2017.12.015.
  • B. M. SHABAGA et al., “Geochemistry and Geochronology of the Kiggavik Uranium Deposit, Nunavut, Canada,” Miner. Deposita, 56, 7, 1245 (2021); https://doi.org/10.1007/s00126-020-01001-8.
  • I. CASAS et al., “The Role of Pe, pH, and Carbonate on the Solubility of UO2 and Uraninite Under Nominally Reducing Conditions,” Geochim. Cosmochim. Acta, 62, 13, 2223 (1998); https://doi.org/10.1016/S0016-7037(98)00140-9.
  • P. L. SMEDLEY and D. G. KINNIBURGH, “Uranium in Natural Waters and the Environment: Distribution, Speciation and Impact,” Appl. Geochem., 148, 105534 (2023); https://doi.org/10.1016/j.apgeochem.2022.105534.
  • K.-U. ULRICH et al., “Comparative Dissolution Kinetics of Biogenic and Chemogenic Uraninite Under Oxidizing Conditions in the Presence of Carbonate,” Geochim. Cosmochim. Acta, 73, 20, 6065 (2009); https://doi.org/10.1016/j.gca.2009.07.012.