584
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Presentation of the xM3 Test Case of the P2M Simulation Exercise and Modeling with the Fuel Performance Code ALCYONE

, ORCID Icon, , , , , & show all
Pages 285-307 | Received 31 Mar 2023, Accepted 31 Jul 2023, Published online: 10 Oct 2023

References

  • M. BALES, “The Framework for IrraDiation experimentS (FIDES),” presented at the TopFuel Conf., Raleigh, North Carolina (2022).
  • B. BOER and M. VERWERFT, “Qualification of the New Pressurized Water Capsule (PWC) for Fuel Testing at BR2,” Proc. RRFM 2021, September 26–30 2021, Helsinki, Finland (2021).
  • G. BONNY et al., “Re-Evaluation of a Power-to-Melt Experiment Performed in the High Burnup Chemistry International Program,” Nucl. Technol., 210, 2, 216 (2013); https://doi.org/10.1080/00295450.2023.2264505.
  • U. ENGMAN, “Step Ramp Test of the PWR Test Rod xM3 with ZIRLO Radial Texture,” Studsvik Technical Note N-09/180 Rev. 1, STUDSVIK-SCIP-II-146, Studsvik (2012).
  • V. ARIMESCU et al., “Third SCIP Modeling Workshop: Beneficial Impact of Slow Power Ramp on PCI Performance,” Proc. WRFPM 2014, Paper No. 100045, Sendai, Japan, September 14–17, 2014 (2014).
  • V. ARIMESCU and J. KARLSSON, “Towards Understanding Beneficial Effects of Slow Power Ramps,” J. Nucl. Sci. Technol. (2015); http://dx.doi.org/10.1080/00223131.2015.1023382.
  • V. D’AMBROSI et al., “P2M Simulation Exercise on Past Fuel Melting Irradiation Experiments: Main Outcomes on Fuel Melting Assessment in PWR Fuel,” presented at the TopFuel Conf., Raleigh, North Carolina (2022).
  • V. D’AMBROSI et al., “P2M Simulation Exercise on Past Fuel Melting Irradiation Experiments,” Nucl. Technol., 210, 2, 189 (2023); http://dx.doi.org/10.1080/00295450.2023.2194270.
  • H.-U. ZWICKY, “Post-Irradiation Examinations of Ramped Rodlets xM1, xM2 and xM3,” Studsvik Technical Report N-12/125 Rev. 1, STUDSVIK-SCIP-II-140, Studsvik (2012).
  • J. ROBERTSON et al., “Temperature Distribution in UO2 Fuel Elements,” J. Nucl. Mater., 7, 3, 225 (1962); http://dx.doi.org/10.1016/0022-3115(62)90243-X.
  • D. DE HALAS and G. HORN, “Evolution of Uranium Dioxide Structure During Irradiation of Fuel Rods,” J. Nucl. Mater., 8, 2, 207 (1963); http://dx.doi.org/10.1016/0022-3115(63)90036-9.
  • M. FRESHLEY, “Operation with Fuel Melting,” Nucl. Eng. Des., 21, 2, 254 (1972); http://dx.doi.org/10.1016/0029-5493(72)90076-3.
  • D. FREUND, D. GEITHOFF, and H. STEINER, “Evaluation of the Power-to-Melt Experiments POTOM,” J. Nucl. Mater., 204, 228 (1993); http://dx.doi.org/10.1016/0022-3115(93)90221-J.
  • I. MASAKI et al., “Power-to-Melts of Uranium-Plutonium Oxide Fuel Pins at a Beginning-of-Life Condition in the Experimental Fast Reactor JOYO,” J. Nucl. Mater., 323, 1, 108 (2003); http://dx.doi.org/10.1016/j.jnucmat.2003.08.030.
  • P. SENS, “The Kinetics of Pore Movement in UO2 Fuel Rods,” J. Nucl. Mater., 43, 3, 293 (1972); http://dx.doi.org/10.1016/0022-3115(72)90061-X.
  • S. NOVASCONE et al., “Modeling Porosity Migration in LWR and Fast Reactor MOX Fuel Using the Finite Element Method,” J. Nucl. Mater., 508, 226 (2018); http://dx.doi.org/10.1016/j.jnucmat.2018.05.041.
  • J. SERCOMBE et al., “2.14—Modelling of Pellet Cladding Interaction,” Comprehensive Nuclear Materials, R. KONINGS and R. STOLLER, Eds., Elsevier, Oxford (2020).
  • B. MICHEL et al., “Two Fuel Performance Codes of the PLEIADES Platform: ALCYONE and GERMINAL,” Nuclear Power Plant Design and Analysis Codes, pp. 207–233, Elsevier (2021).
  • B. MICHEL et al., “Simulation of Pellet-Cladding Interaction with the PLEIADES Fuel Performance Software Environment,” Nucl. Technol., 182, 2, 124 (2013); http://dx.doi.org/10.13182/NT13-A16424.
  • “Cast3M,” CEA; http://www-cast3m.cea.fr/.
  • E. GEIGER et al., “Modelling Nuclear Fuel Behaviour with TAF-ID: Calculations on the VERDON-1 Experiment, Representative of a Nuclear Severe Accident,” J. Nucl. Mater., 522, 294 (2019); http://dx.doi.org/10.1016/j.jnucmat.2019.05.027.
  • A. GERMAIN et al., “Modeling High Burnup Fuel Thermochemistry, Fission Product Release and Fuel Melting During the VERDON 1 and RT6 Tests,” J. Nucl. Mater., 561, 153527 (2022); http://dx.doi.org/10.1016/j.jnucmat.2022.153527.
  • “ What is OpenCalphad,” OpenCalphad Software; http://www.opencalphad.com/.
  • B. SUNDMAN et al., “OpenCalphad—A Free Thermodynamic Software,” Integr. Mater. Manuf. Innovation, 4, 1 (2015); http://dx.doi.org/10.1186/s40192-014-0029-1.
  • B. BAURENS et al., “3D Thermo-Chemo-Mechanical Simulation of Power Ramps with ALCYONE,” J. Nucl. Mater., 452, 518 (2014); http://dx.doi.org/10.1016/j.jnucmat.2014.06.021.
  • P. KONARSKI, “Thermo-Chemical-Mechanical Modeling of Nuclear Fuel Behavior. Impact of Oxygen Transport in the Fuel on Pellet Cladding Interaction,” PhD Thesis, INSA, Lyon, France (2019).
  • C. INTRONI, J. SERCOMBE, and B. SUNDMAN, “Development of a Robust, Accurate and Efficient Coupling Between PLEIADES/ALCYONE 2.1 Fuel Performance Code and the OpenCalphad Thermo-Chemical Solver,” Nucl. Eng. Des., 369, 110818 (2020); http://dx.doi.org/10.1016/j.nucengdes.2020.110818.
  • C. GUÉNEAU et al., “TAF-ID: An International Thermodynamic Database for Nuclear Fuels Applications,” Calphad, 72, 102212 (2021); http://dx.doi.org/10.1016/j.calphad.2020.102212.
  • “Thermodynamics Advanced Fuels—International Database (TAF-1D),” Nuclear Energy Agency (2013); https://www.oecd-nea.org/science/taf-id/.
  • C. GUÉNEAU et al., “Thermodynamic Modelling of Advanced Oxide and Carbide Nuclear Fuels: Description of the U-Pu-O-C Systems,” J. Nucl. Mater., 419, 1–3, 145 (2011); http://dx.doi.org/10.1016/j.jnucmat.2011.07.033.
  • D. MANARA et al., “Melting of Stoichiometric and Hyperstoichiometric Uranium Dioxide,” J. Nucl. Mater., 342, 1, 148 (2005); http://dx.doi.org/10.1016/j.jnucmat.2005.04.002.
  • C. INTRONI et al., “Phase-Field Modeling with the TAF-ID of Incipient Melting and Oxygen Transport in Nuclear Fuel During Power Transients,” J. Nucl. Mater., 556, 153173 (2021); http://dx.doi.org/10.1016/j.jnucmat.2021.153173.
  • T. HIROSAWA and I. SATO, “Burnup Dependence of Melting Temperature of FBR Mixed Oxide Fuels Irradiated to High Burnup,” J. Nucl. Mater., 418, 1, 207 (2011); http://dx.doi.org/10.1016/j.jnucmat.2011.07.001.
  • L. SIEFKEN et al., “SCDAP/RELAP5/MOD 3.3 Code Manual. MATPRO: A Library of Materials Properties for Light-Water-Reactor Accident Analysis,” Technical Report NUREG/CR-6150, Vol. 4, Rev. 2, INEL-96/0422, Idaho National Laboratory (2001).
  • J. CHRISTENSEN, R. ALLIO, and A. BIANCHERIA, “Melting Point of Irradiated Uranium Dioxide,” Atomic Power Division, Westinghouse Electric Corp. (1965).
  • A. MAGNI et al., “Report on the Improved Models of Melting Temperature and Thermal Conductivity for MOX Fuels and JOG,” Technical Report D6.2, Version 2, INSPYRE (2020).
  • A. MAGNI et al., “Modelling and Assessment of Thermal Conductivity and Melting Behaviour of MOX Fuel for Fast Reactor Applications,” J. Nucl. Mater., 541, 152410 (2020); http://dx.doi.org/10.1016/j.jnucmat.2020.152410.
  • M. ADAMSON, E. AITKEN, and R. CAPUTI, “Experimental and Thermodynamic Evaluation of the Melting Behavior of Irradiated Oxide Fuels,” J. Nucl. Mater., 130, 349 (1985); http://dx.doi.org/10.1016/0022-3115(85)90323-X.
  • J. J. CARBAJO et al., “A Review of the Thermophysical Properties of MOX and UO2 Fuels,” J. Nucl. Mater., 299, 3, 181 (2001); http://dx.doi.org/10.1016/S0022-3115(01)00692-4.
  • K. GEELHOOD et al., “MatLib-1.0: Nuclear Material Properties Library,” Technical Report PNNL 29728, Pacific Northwest National Laboratory (2020).
  • K. KONNO and T. HIROSAWA, “Melting Temperature of Mixed Oxide Fuels for Fast Reactors,” J. Nucl. Sci. Technol., 39, 7, 771 (2002); http://dx.doi.org/10.1080/18811248.2002.9715259.
  • J. KOMATSU, T. TACHIBANA, and K. KONASHI, “The Melting Temperature of Irradiated Oxide Fuel,” J. Nucl. Mater., 154, 1, 38 (1988); http://dx.doi.org/10.1016/0022-3115(88)90116-X.
  • P. LUCUTA, H. MATZKE, and I. HASTINGS, “A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel: Review and Recommendations,” J. Nucl. Mater., 232, 2–3, 166 (1996); http://dx.doi.org/10.1016/S0022-3115(96)00404-7.
  • D. MARTIN, “The Elastic Constants of Polycrystalline UO2 and (U, Pu) Mixed Oxides: A Review and Recommendations,” High Temp. High Pressures, 21, 1, 13 (1989).
  • M. LAINET et al., “GERMINAL, a Fuel Performance Code of the PLEIADES Platform to Simulate the In-Pile Behaviour of Mixed Oxide Fuel Pins for Sodium-Cooled Fast Reactors,” J. Nucl. Mater., 516, 30 (2019); http://dx.doi.org/10.1016/j.jnucmat.2018.12.030.
  • J. SERCOMBE, I. AUBRUN, and C. NONON, “Power Ramped Cladding Stresses and Strains in 3D Simulations with Burnup-Dependent Pellet-Clad Friction,” Nucl. Eng. Des., 242, 164 (2012); http://dx.doi.org/10.1016/j.nucengdes.2011.08.069.
  • V. D’AMBROSI et al., “Homogenization Approach to Model the Thermal-Mechanical Behavior of Melting Fuel Material,” J. Nucl. Mater., 535, 152149 (2020); http://dx.doi.org/10.1016/j.jnucmat.2020.152149.
  • D. MARTIN, “The Thermal Expansion of Solid UO2 and (U, Pu) Mixed Oxides—A Review and Recommendations,” J. Nucl. Mater., 152, 2–3, 94 (1988); http://dx.doi.org/10.1016/0022-3115(88)90315-7.
  • J. FINK, “Thermophysical Properties of Uranium Dioxide,” J. Nucl. Mater., 279, 1, 1 (2000); http://dx.doi.org/10.1016/S0022-3115(99)00273-1.
  • L. NOIROT, “MARGARET: A Comprehensive Code for the Description of Fission Gas Behavior,” Nucl. Eng. Des., 241, 6, 2099 (2011); http://dx.doi.org/10.1016/j.nucengdes.2011.03.044.
  • M. VERWERFT, “Multiple Voltage Electron Probe Microanalysis of Fission Gas Bubbles in Irradiated Nuclear Fuel,” J. Nucl. Mater., 282, 2–3, 97 (2000); http://dx.doi.org/10.1016/S0022-3115(00)00421-9.
  • C. SCHNEIDER, “Physical, Chemical and Mechanical Changes at the Fuel-Cladding Interface of Irradiated PWR Fuel Rods,” PhD Thesis, Université Bourgogne Franche-Comté (2022) ( in French).
  • J. JULIEN et al., “Adjustment of Fuel Creep Behavior Based on Post-Ramp Dish Filling Observations and 3D Simulations. Impact on Clad Ridges,” presented at the TopFuel Conf., Manchester, United Kingdom (2012).
  • T. BARANI, I. RAMIÈRE, and B. MICHEL, “Analysis of Fabrication and Crack-Induced Porosity Migration in Mixed Oxide Fuels for Sodium Fast Reactors by the Finite Element Method,” J. Nucl. Mater., 558, 153341 (2022); http://dx.doi.org/10.1016/j.jnucmat.2021.153341.
  • A. MAGNI et al., “Modelling of Thermal Conductivity and Melting Behaviour of Minor Actinide-MOX Fuels and Assessment Against Experimental and Molecular Dynamics Data,” J. Nucl. Mater., 557, 153312 (2021); http://dx.doi.org/10.1016/j.jnucmat.2021.153312.