344
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Roadmap of Graphite Moderator and Graphite-Matrix TRISO Fuel Management Options

ORCID Icon
Pages 1623-1638 | Received 03 Apr 2023, Accepted 25 Mar 2024, Published online: 10 Jun 2024

References

  • “Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal: Results of a Coordinated Research Project,” IAEA-TECDOC-1790, International Atomic Energy Agency (2016); https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1790_web.pdf.
  • A. SOWDER, “EPRI: Progress to Date and Future Plans,” presented at the Spring 2018 Advanced Reactor TAG Mtg., March 20, 2018.
  • “X-ENERGY,” X-Energy; https://x-energy.com/.
  • “ The Future of Nuclear Power,” Kairos Power; https://kairospower.com/.
  • C. W. FORSBERG, “Market Basis for Salt-Cooled Reactors: Dispatchable Heat, Hydrogen, and Electricity with Assured Peak Power Capacity,” Nucl. Technol., 206, 11, 1659 (Nov. 2020); http://dx.doi.org/10.1080/00295450.2020.1743628.
  • C. W. FORSBERG and B. DALE, “Can a Nuclear-Assisted Biofuels System Enable Liquid Biofuels as the Economic Low-Carbon Replacement for All Liquid Fossil Fuels and Hydrocarbon Feedstocks and Enable Negative Carbon Emissions?,” MIT-NES-TR-023, Massachusetts Institute of Technology (Apr. 2022); http://dx.doi.org/10.2172/2281710.
  • C. W. FORSBERG et al., “Replacing Liquid Fossil Fuels and Hydrocarbon Chemical Feedstocks with Liquid Biofuels from Large-Scale Nuclear Biorefineries,” Appl. Energy, 298, 117525 (Sep. 15, 2021); http://dx.doi.org/10.1016/j.apenergy.2021.117225.
  • “Energy Flow Charts,” Lawrence Livermore National Laboratory (2020); https://flowcharts.llnl.gov/.
  • “Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors,” IAEA-TECDOC-1521, International Atomic Energy Agency (2006); https://www-pub.iaea.org/MTCD/Publications/PDF/te_1521_web.pdf.
  • “High Temperature Gas Cooled Reactor Fuels and Materials,” TECDOC-1645, International Atomic Energy Agency (2010); https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1645_CD/PDF/TECDOC_1645.pdf.
  • D. BRADBURY and A. WICKHAM, “Graphite Decommissioning: Options for Graphite Treatment, Recycling, or Disposal, Including Discussion of Safety-Related Issues,” Final Report 1013091. Electric Power Research Institute (Mar. 2006); https://www.epri.com/research/products/1013091.
  • M. P. METCALFE et al., “EU Carbowaste Project: Development of a Toolbox for Graphite Waste Management,” J. Nucl. Mat., 436, 158 (May 2013); http://dx.doi.org/10.1016/j.jnucmat.2012.11.016.
  • International Project on Irradiated Graphite Processing Approaches, International Atomic Energy Agency (in Press).
  • A. WAREING et al., “Development of Integrated Waste Management Options for Irradiated Graphite,” Nucl. Eng. Technol., 49, 5, 1010 (2017); http://dx.doi.org/10.1016/j.net.2017.03.001.
  • A. WAREING et al., “Final Publishable CARBOWASTE Report,” Deliverable D-0.3.12, European Commission (June 7, 2013); https://cordis.europa.eu/docs/results/211333/final1-cw1306-final-report-f.pdf.
  • A. WICKHAM et al., “Updating Irradiated Graphite Disposal: Project ‘GRAPA’ and the International Decommissioning Network,” J. Environ. Radioact., 171, 34 (2017); http://dx.doi.org/10.1016/j.jenvrad.2017.01.022.
  • Molten Salt Reactors and Thorium Energy, 2nd ed., T. J. DOLAN et al., Ed., Woodhead Publishing Series in Energy (2024).
  • “Advances in High Temperature Gas Cooled Reactor Fuel Technology,” IAEA-TECDOC-CD-1674, International Atomic Energy Agency (2012).
  • “Fort Saint Vrain HTGR (Th/U Carbide) Fuel Characteristics for Disposal Criticality Analysis,” DOE/SNF/REP-060, United States Department of Energy Office of Environmental Management (Jan. 2001).
  • “Generic FHR Core Model,” Kairos Power; https://kairospower.com/generic-fhr-core-model/.
  • D. MALLANTS et al., “Impact of Advanced Reactors on the Back-End Management of the Nuclear Fuel Cycle: Advanced Reactor Fuel Cycle Landscape Study,” 3002023916, Electric Power Research Institute (Dec. 2022).
  • L. L. SNEAD et al., “Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors—Monthly Highlights,” ORNL/TM-2010/300, Oak Ridge National Laboratory (Oct. 2010); https://www.osti.gov/biblio/1023833/.
  • P. J. PAPPANO and T. D. BURCHELL, “A Study of the Annealing Behavior of Neutron Irradiated Graphite,” Carbon, 49, 1, 3 (2011); http://dx.doi.org/10.1016/j.carbon.2010.08.026.
  • T. D. BURCHELL and P. J. PAPPANO, “Recycling Irradiated Nuclear Graphite—A Greener Path Forward,” Nucl. Eng. Des., 251, 69 (2012); http://dx.doi.org/10.1016/j.nucengdes.2011.10.068.
  • T. BURCHELL and P. PAPPANO, “DOE Deep Burn Program: The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets,” ORNL/TM-2010/00169, Oak Ridge National Laboratory (Aug. 2010); https://info.ornl.gov/sites/publications/files/Pub25550.pdf.
  • G. D. DELCUL et al., “TRISO-Coated Fuel Processing to Support High-Temperature Gas-Cooled Reactors,” ORNL/TM-2002/156, Oak Ridge National Laboratory (Sep. 2002); https://info.ornl.gov/sites/publications/Files/Pub57144.pdf.
  • K. NAITO, T. MATSUI, and Y. TANAKA, “Recovery of Noble Metals from Insoluble Residue of Spent Fuel,” J. Nucl. Sci. Technol., 23, 6, 540 (Mar. 15, 2012); https://doi.org/10.1080/18811248.1986.9735017.
  • G. A. JENSEN et al., “Recovery of Noble Metals from Fission Products,” Nucl. Technol., 65, 2, 305 (1984); http://dx.doi.org/10.13182/NT84-A33413.
  • A. L. LOTTS et al., “Options for Treating High-Temperature Gas-Cooled Reactor Fuel for Repository Disposal,” ORNL/TM-12027, Oak Ridge National Laboratory (Feb. 1992); https://inis.iaea.org/collection/NCLCollectionStore/_Public/23/072/23072033.pdf.
  • C. S. HAASE and S. H. ROW, “Status of the Oak Ridge National Laboratory New Hydrofracture Facility: Implications for the Disposal of Liquid Low-Lever Radioactive Wastes by Underground Injection,” CONF-870306-46, Oak Ridge National Laboratory (1987).
  • J. H. SHAFFER and J. O. BLOMEKE, “Hydraulic Fracturing as a Method for the Disposal of Volatile Radioactive Wastes,” ORNL/TM-6931, Oak Ridge National Laboratory (Aug. 1979).
  • S. KREVOR et al., “Subsurface Carbon Dioxide and Hydrogen Storage for a Sustainable Energy Future,” Nat. Rev. Earth Environ., 4, 102 (Feb. 2023); http://dx.doi.org/10.1038/s43017-022-00376-8.
  • A. THEODOSIOU et al., “The Complete Oxidation of Nuclear Graphite Waste via Thermal Treatment: An Alternative to Geological Disposal,” J. Nucl. Mater., 507, 208 (2018); http://dx.doi.org/10.1016/j.jnucmat.2018.05.002.
  • C. FORSBERG and P. F. PETERSON, “Spent Nuclear Fuel and Graphite Management for Salt-Cooled Reactors: Storage, Safeguards, and Repository Disposal,” Nucl. Technol., 191, 113 (Aug. 2015); https://doi.org/10.13182/NT14-88.
  • L. VERGARI et al., “The Corrosion Effects of Neutron Activation of 2LiF-BeF2 (Flibe),” Nucl. Mater. Energy, 34, 101289 (2022).
  • C. W. FORSBERG et al., “Lessons Learned in How to Conduct Irradiated Salt Experiments,” Trans. Am. Nucl. Soc. Annual Mtg., Indianapolis, Indiana, June 11–14, 2023 (2023).
  • L. VERGARI and R. O. SCARLAT, “Kinetics and Transport of Hydrogen in Graphite at High Temperature and the Effects of Oxidation, Irradiation and Isotopics,” J. Nucl. Mater., 558, 153142 (2021).
  • L. VERGARI and R. O. SCARLAT, “Thermodynamics of Hydrogen in Graphite at High Temperature and the Effects of Oxidation, Irradiation and Isotopics,” J. Nucl. Mater., 552, 152797 (2021); http://dx.doi.org/10.1016/j.jnucmat.2021.152797.
  • H. ATSUMI and Y. KONDO, “Retention and Release of Hydrogen Isotopes in Carbon Materials Priorly Charged in Gas Phase,” Fusion Eng. Des., 131, 49 (2018); http://dx.doi.org/10.1016/j.fusengdes.2018.04.039.
  • L. VERGARI et al., “Infiltration of Molten Fluoride Salts in Graphite: Phenomenology and Engineering Considerations for Reactor Operations and Waste Disposal,” J. Nucl. Mater., 572, 154058 (2022); http://dx.doi.org/10.1016/j.jnucmat.2022.154058.
  • L. VERGARI et al., “Wetting Behavior of Molten Salts on Graphite,” ANS Student Conf. (2023).
  • D. SASSANI and F. GELBARD, “Performance Assessment Model for Degradation of Tristructural Isotopic (TRISO) Coated Particle Spent Fuel,” SAND2019-1906c, Sandia National Laboratory (2019); https://www.osti.gov/servlets/purl/1602111.
  • Carbon Science for Carbon Markets: Emerging Opportunities in Iowa, M. L. SCHULTE and J. JORDAHL, Eds., Iowa State University (2022).
  • “61.58 Alternative Requirements for Waste Classification and Characteristics,” 10 CFR 61.58. Section 61.58 Alternative Requirements for Waste Classification and Characteristics, U.S. Nuclear Regulatory Commission.
  • C. FORSBERG, “Rethinking High-Level Waste Disposal: Separate Disposal of High-Heat Radionuclides (90Sr and 137Cs),” Nucl. Technol., 131, 2, 252 (Aug. 2000); http://dx.doi.org/10.13182/NT00-A3115.
  • “Underground Landfill Herfa-Neurode,” Wikipedia; https://de.wikipedia.org/wiki/Untertagedeponie_Herfa-Neurode.
  • L. KUHNE, “Lokalisation, Freisetzung, Speziesbestimmung von C-14 und H-3 in Reaktorgraphit,” PhD Thesis, Rheinisch-Westfalischen Technischen Hochschule Aachen, Faculty of Georesources and Materials Engineering (July 6, 2017); PromotionsarbeitLenaKuhneDank(rwth-aachen.de).
  • P. BRENNECKE, “Anforderungen an Endzulagernde Radioaktive Abfalle,” Endlager Konrad (Dec. 2014).
  • “ Managing the Swedish Nuclear Waste,” SKB (2023); https://www.skb.com/.
  • J. CONCA, “Comparing Costs for Deep Geological Nuclear Waste Disposal,” Nuclear News (May 2022).
  • “Waste Package Library, A Report of the Radioactive Waste Repository Metadata Management (REPMET) Initiative,” NEA/RWM/R(2019)3, Nuclear Energy Agency (Nov. 4, 2021).
  • A. THEODOSIOU, A. N. JONES, and B. J. MARSDEN, “Thermal Oxidation of Nuclear Graphite: A Large Scale Waste Treatment Option,” PLoS One, 12, e0182860 (Aug. 9, 2017); http://dx.doi.org/10.1371/journal.pone.0182860.
  • W. WINDES et al., “Role of Nuclear Grade Graphite in Controlling Oxidation in Modular HTGRs,” INL/EXT-14-31720, Idaho National Laboratory (Nov. 2014).
  • N. JONES, “Carbon Dating Hampered by Rising Fossil-Fuel Emissions,” Nature (July 7, 2022); https://www.nature.com/articles/d41586-022-02057-4.
  • S. O. SNAEBJORNSDOTTIR et al., “Carbon Dioxide Storage Through Mineral Carbonation,” Nat. Rev. Earth Environ., 1, 90 (Jan. 2020); https://www.nature.com/articles/s43017-019-0011-8.
  • F. PARISIO and V. VILARRASA, “Sinking CO2 in Supercritical Reservoirs,” Geophys. Res. Lett., 47, e2020GL090456 (2020); http://dx.doi.org/10.1029/2020GL090456.
  • E. S. RUBIN, J. E. DAVISON, and H. HERZOG, “The Cost of CO2 Capture and Storage,” Int. J. Greenhouse Gas Control, 40, 378 (2015); http://dx.doi.org/10.1016/j.ijggc.2015.05.018.
  • W. J. SCHMELZ, G. HOCHMAN, and K. G. MILLER, “Total Cost of Carbon Capture and Storage Implemented at a Regional Scale: Northeastern and Midwestern United States,” Interface Focus, 10, 20190065 (2020); http://dx.doi.org/10.1098/rsfs.2019.0065.
  • C. W. FORSBERG, “What is the Long-Term Demand for Liquid Hydrocarbon Fuels and Feedstocks?,” Appl. Energy, 341, 121104 (July 1, 2023); http://dx.doi.org/10.1016/j.apenergy.2023.121104.
  • W. J. SAGUES et al., “Prospects for Bioenergy with Carbon Capture & Storage in the United States Pulp and Paper Industry,” Energy Environ. Sci., 13, 2243 (2020); http://dx.doi.org/10.1039/D0EE01107J.
  • B. P. VAN DEN AKKER and J. AHN, “Performance Assessment for Geological Disposal of Graphite Waste Containing TRISO Particles,” Nucl. Technol., 181, 3, 408 (2013); http://dx.doi.org/10.13182/NT11-103.
  • C. FORSBERG and A. KADAK, “Safeguards and Security for High-Burnup TRISO Pebble-Bed Spent Fuel and Reactors,” Nucl. Technol., 210, 1354 (2024); http://dx.doi.org/10.1080/00295450.2023.2298157.
  • A. J. MCWILLIAMS, “High Temperature Gas-cooled Reactor (HTGR) Graphite Pebble Fuel: Review of Technologies for Reprocessing,” SRNL-RP-2015-00744, Savannah River National Laboratory (Sep. 2015); http://dx.doi.org/10.2172/1214176.
  • S. T. ARM et al., “Plan for Developing TRISO Fuel Processing Technology,” PNNL-32969, Pacific Northwest National Laboratory (June 2022); https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-32969.pdf.