728
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An Inline Burnup Algorithm

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1681-1699 | Received 25 Apr 2022, Accepted 22 Jul 2022, Published online: 04 Oct 2022

References

  • D. P. GRIESHEIMER, “In-line Xenon Convergence Algorithm for Monte Carlo Reactor Calculations,” Proceedings of International Conference on Physics of Reactors (PHYSOR 2010), Pittsburgh, Pennsylvania (2010).
  • D. F. GILL, D. P. GRIESHEIMER, and D. L. AUMILLER, “Numerical Methods in Coupled Monte Carlo and Thermal-Hydraulic Calculations,” Nucl. Sci. Eng., 185, 1, 194 (2017); https://doi.org/10.13182/NSE16-3.
  • M. KREHER, B. FORGET, and K. SMITH, “Single-Batch Monte Carlo Multiphysics Coupling,” Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Portland, Oregon. (2019).
  • D. GILL, “Inline Thermal and Xenon Feedback Iterations in Monte Carlo Reactor Calculations,” Proceedings of PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, Cambridge, UK (2020).
  • B. KOCHUNAS, A. FITZGERALD, and E. LARSEN, “Fourier Analysis of Iteration Schemes for k-eigenvalue Transport Problems with Flux-Dependent Cross Sections,” J. Comput. Phys., 345, 294 (2017); https://doi.org/10.1016/j.jcp.2017.05.028.
  • J. P. SENECAL and W. JI, “Approaches for Mitigating Over-Solving in Multiphysics Simulations,” Int. J. Numer. Methods Eng., 112, 6, 503 (2017); https://doi.org/10.1002/nme.5516.
  • Q. SHEN, N. ADAMOWICZ, and B. KOCHUNAS, “Relationship Between Relaxation and Partial Convergence of Nonlinear Diffusion Acceleration for Problems with Feedback,” Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Portland, Oregon. (2019).
  • Q. SHEN et al., “X-CMFD: A Robust Iteration Scheme for CMFD-based Acceleration of Neutron Transport Problems with Nonlinear Feedback,” Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Portland, Oregon. (2019).
  • Q. SHEN and B. KOCHUNAS, “A Robust Relaxation-Free Multiphysics Iteration Scheme for CMFD-Accelerated Neutron Transport k-Eigenvalue Calculations—I: Theory,” Nucl. Sci. Eng., 195, 1176 (2021); https://doi.org/10.1080/00295639.2021.1906585.
  • Q. SHEN, S. CHOI, and B. KOCHUNAS, “A Robust Relaxation-Free Multiphysics Iteration Scheme for CMFD—Accelerated Neutron Transport k-Eigenvalue calculation—II: Numerical Results,” Nucl. Sci. Eng., 195, 1202 (2021); https://doi.org/10.1080/00295639.2021.1906586.
  • A. ISOTALO and P. AARNIO, “Higher Order Methods for Burnup Calculations with Bateman Solutions,” Ann. Nucl. Energy, 38, 1987 (2011); https://doi.org/10.1016/j.anucene.2011.04.022.
  • A. ISOTALO and P. AARNIO, “Substep Methods for Burnup Calculations with Bateman Solutions,” Ann. Nucl. Energy, 38, 11, 2509 (2011); https://doi.org/10.1016/j.anucene.2011.07.012.
  • A. ISOTALO and V. SAHLBERG, “Comparison of Neutronics-Depletion Coupling Schemes for Burnup Calculations,” Nucl. Sci. Eng., 179, 4, 434 (2015); https://doi.org/10.13182/NSE14-35.
  • C. JOSEY, B. FORGET, and K. SMITH, “High Order Methods for the Integration of the Bateman Equations and Other Problems of the Form of Y´ = F(y, T) Y,” J. Comput. Phys., 350, 296 (2017); https://doi.org/10.1016/j.jcp.2017.08.025.
  • J. DUFEK and J. E. HOOGENBOOM, “Numerical Stability of Existing Monte Carlo Burnup Codes in Cycle Calculations of Critical Reactors,” Nucl. Sci. Eng., 162, 3, 307 (2009); https://doi.org/10.13182/NSE08-69TN.
  • J. DUFEK et al., “Numerical Stability of the Predictor-Corrector Method in Monte Carlo Burnup Calculations of Critical Reactors,” Ann. Nucl. Energy, 56, 34 (2013); https://doi.org/10.1016/j.anucene.2013.01.018.
  • D. KOTLYAR and E. SHWAGERAUS, “On the Use of Predictor-Corrector Method for Coupled Monte Carlo Burnup Codes,” Ann. Nucl. Energy, 58, 228 (2013); https://doi.org/10.1016/j.anucene.2013.03.034.
  • J. D. DENSMORE, D. F. GILL, and D. P. GRIESHEIMER, “Stability Analysis of Burnup Calculations,” Trans. Am. Nucl. Soc., 109, 695 (2013); https://doi.org/10.1007/s10967-012-2210-3.2.
  • P. COSGROVE, E. SHWAGERAUS, and G. T. PARKS, “Stability Analysis of Predictor-Corrector Schemes for Coupling Neutronics and Depletion,” Ann. Nucl. Energy, 149, 107781 ( Dec. 2020); https://doi.org/10.1016/j.anucene.2020.107781.
  • A. E. ISOTALO, J. LEPPÄNEN, and J. DUFEK, “Preventing Xenon Oscillations in Monte Carlo Burnup Calculations by Enforcing Equilibrium Xenon Distribution,” Ann. Nucl. Energy, 60, 78 (2013); https://doi.org/10.1016/j.anucene.2013.04.031.
  • J. DUFEK, D. KOTLYAR, and E. SHWAGERAUS, “The Stochastic Implicit Euler Method: A Stable Coupling Scheme for Monte Carlo Burnup Calculations,” Ann. Nucl. Energy, 60, 295 (2013); https://doi.org/10.1016/j.anucene.2013.05.015.
  • D. KOTLYAR and E. SHWAGERAUS, “Numerically Stable Monte Carlo-Burnup-Thermal Hydraulic Coupling Schemes,” Ann. Nucl. Energy, 63, 371 (2014); https://doi.org/10.1016/j.anucene.2013.08.016.
  • D. KOTLYAR and E. SHWAGERAUS, “Stochastic Semi-Implicit Substep Method for Coupled Depletion Monte-Carlo Codes,” Ann. Nucl. Energy, 92, 52 (2016); https://doi.org/10.1016/j.anucene.2016.01.022.
  • C. JOSEY, “Development and Analysis of High Order Neutron Transport-Depletion Coupling Algorithms,” Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, PhD Thesis (2017).
  • V. VALTAVIRTA and J. LEPPÄNEN, “New Stochastic Substep Based Burnup Scheme for Serpent,” PHYSOR 2018: Reactor Physics paving the way towards more efficient systems, Cancun, Mexico, 2, (2018).
  • P. COSGROVE, E. SHWAGERAUS, and G. T. PARKS, “A Simple Implicit Coupling Scheme for Monte Carlo Neutronics and Isotopic Depletion,” Ann. Nucl. Energy, 141, 107374 (June 2020); https://doi.org/10.1016/j.anucene.2020.107374.
  • P. COSGROVE, “Numerical Stability of Monte Carlo Neutron Transport and Isotopic Depletion for Nuclear Reactor Analysis,” University of Cambridge, PhD Thesis (2020).
  • J. LEPPÄNEN et al., “The Serpent Monte Carlo Code: Status, Development and Applications in 2013,” Ann. Nucl. Energy, 82, 142 (2015); https://doi.org/10.1016/j.anucene.2014.08.024.
  • D. P. GRIESHEIMER, D. C. CARPENTER, and M. H. STEDRY, “Practical Techniques for Large-Scale Monte Carlo Reactor Depletion Calculatons,” Prog. Nucl. Energy, 101, 409 (2017); https://doi.org/10.1016/j.pnucene.2017.05.018.
  • P. K. ROMANO et al., “Depletion Capabilities in the OpenMC Monte Carlo Particle Transport Code,” Ann. Nucl. Energy, 152, 107989 (Mar. 2021); https://doi.org/10.1016/j.anucene.2020.107989.
  • G. BELL and S. GLASSTONE, “Nuclear Reactor Theory,” US Atomic Energy Commission, Washington, DC (1970).
  • C. MOLER and C. V. LOAN, “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” SIAM Rev., 45, 1, 3 (2003); https://doi.org/10.1137/S00361445024180.
  • M. PUSA and J. LEPPÄNEN, “Computing the Matrix Exponential in Burnup Calculations,” Nucl. Sci. Eng., 164, 2, 140 (2010); https://doi.org/10.13182/NSE09-14.
  • M. PUSA, “Rational Approximations to the Matrix Exponential in Burnup Calculations,” Nucl. Sci. Eng., 169, 2, 155 (2011); https://doi.org/10.13182/NSE10-81.
  • J. C. SUBLET et al., “FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling,” Nucl. Data Sheets, 139, 77 (2017); https://doi.org/10.1016/j.nds.2017.01.002.
  • M. ELLIS et al., “Spatially Continuous Depletion Algorithm for Monte Carlo Simulations,” Trans. Am. Nucl. Soc., 115, 1.
  • D. GRIESHEIMER et al., “MC21 V.6.0—A Continuous-Energy Monte Carlo Particle Transport Code with Integrated Reactor Feedback Capabilities,” Ann. Nucl. Energy, 82, 29 (2015); https://doi.org/10.1016/j.anucene.2014.08.020.
  • H. ROBBINS and S. MONRO, “A Stochastic Approximation Method,” Ann. Math. Statist., 22, 3, 400 (1951); https://doi.org/10.1214/aoms/1177729586.
  • N. ADAMOWICZ and P. COSGROVE, “Recent Advances in the Stability Analysis of Burn-Up Calculations,” Proc. M&C 2021, Raleigh, North Carolina (2021).
  • P. COSGROVE and N. ADAMOWICZ, “Stability Analysis of Spatial Discretisation in Burn-Up Calculations,” Proc. M&C 2021, Raleigh, North Carolina (2021).
  • P. COSGROVE and E. SHWAGERAUS, “Stability Analysis of Higher-Order Neutronics-Depletion Coupling Schemes and Bateman Operators,” J. Comput. Phys., 448, 110702 ( Jan. 2022); https://doi.org/10.1016/j.jcp.2021.110702.
  • J. LIEBEROTH, “A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the Boltzmann Transport Equation,” Nukleonik, 11, 213 (1968).
  • M. A. KOWALSKI et al., “Scone: A Student-Oriented Modifiable Monte Carlo Particle Transport Framework,” J. Nucl. Eng., 2, 1, 57 (2021); https://doi.org/10.3390/jne2010006.
  • C. CASTAGNA et al., “Development of a Reduced Order Model for Fuel Burnup Analysis,” Energies, 13, 4, 890 (2020); https://doi.org/10.3390/en13040890.