302
Views
1
CrossRef citations to date
0
Altmetric
Technical Notes

A Unified Framework of Stabilized Finite Element Methods for Solving the Boltzmann Transport Equation

, , ORCID Icon &
Pages 472-484 | Received 24 May 2022, Accepted 22 Jul 2022, Published online: 07 Sep 2022

References

  • K. DMITRI, A Guide to Numerical Methods for Transport Equations, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (2010).
  • R. CODINA, “Comparison of Some Finite Element Methods for Solving the Diffusion-Convection-Reaction Equation,” Comput. Methods Appl. Mech. Eng., 156, 1, 185 (Apr. 1998); https://doi.org/10.1016/S0045-7825(97)00206-5.
  • A. C. GALEÃO and E. G. DUTRA DO CARMO, “A Consistent Approximate Upwind Petrov-Galerkin Method for Convection-Dominated Problems,” Comput. Methods Appl. Mech. Eng., 68, 1, 83 (May 1988); https://doi.org/10.1016/0045-7825(88)90108-9.
  • R. CODINA, “On Stabilized Finite Element Methods for Linear Systems of Convection–Diffusion-Reaction Equations,” Comput. Methods Appl. Mech. Eng., 188, 1, 61 (July 2000); https://doi.org/10.1016/S0045-7825(00)00177-8.
  • C. C. PAIN et al., “Streamline Upwind Petrov–Galerkin Methods for the Steady-State Boltzmann Transport Equation,” Comput. Methods Appl. Mech. Eng., 195, 33, 4448 (July 2006); https://doi.org/10.1016/j.cma.2005.09.004.
  • C. C. PAIN et al., “Space–Time Streamline Upwind Petrov–Galerkin Methods for the Boltzmann Transport Equation,” Comput. Methods Appl. Mech. Eng., 195, 33, 4334 (July 2006); https://doi.org/10.1016/j.cma.2005.09.005.
  • R. T. ACKROYD, “Least-Squares Derivation of Extremum and Weighted-Residual Methods for Equations of Reactor Physics—I. The First-Order Boltzmann Equation and a First-Order Initial-Value Equation,” Ann. Nucl. Energy, 10, 2, 65 (Jan. 1983); https://doi.org/10.1016/0306-4549(83)90011-7.
  • C. FANG et al., “Modified Least-Squares Finite Element Method for Solving the Boltzmann Transport Equation with Spherical Harmonic Angular Approximation,” Ann. Nucl. Energy, 140, 107126 (June 2020); https://doi.org/10.1016/j.anucene.2019.107126.
  • A. G. BUCHAN et al., “The Inner-Element Subgrid Scale Finite Element Method for the Boltzmann Transport Equation,” Nucl. Sci. Eng., 164, 2, 105 (Feb. 2010); https://doi.org/10.13182/NSE08-82.
  • M. AVILA, R. CODINA, and J. PRINCIPE, “Spatial Approximation of the Radiation Transport Equation Using a Subgrid-Scale Finite Element Method,” Comput. Methods Appl. Mech. Eng., 200, 5, 425 (Jan. 2011); https://doi.org/10.1016/j.cma.2010.11.003.
  • T. J. R. HUGHES, “Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods,” Comput. Methods Appl. Mech. Eng., 127, 1, 387 (Nov. 1995); https://doi.org/10.1016/0045-7825(95)00844-9.
  • T. J. R. HUGHES et al., “The Variational Multiscale Method—A Paradigm for Computational Mechanics,” Comput. Methods Appl. Mech. Eng., 166, 1, 3 (Nov. 1998); https://doi.org/10.1016/S0045-7825(98)00079-6.
  • J. DONEA, “A Taylor-Galerkin Method for Convective Transport Problems,” Int. J. Numer. Methods Eng., 20, 1, 101 (Jan. 1984); https://doi.org/10.1002/nme.1620200108.
  • C. FANG et al., “A Residual-Based Subgrid-Scale Method Combined with Spherical Harmonics Angular Approximation for Solving the Boltzmann Transport Equation,” Nucl. Sci. Eng., 196, 5, 526 (2022); https://doi.org/10.1080/00295639.2021.2011667.
  • R. CODINA, “Stabilized Finite Element Approximation of Transient Incompressible Flows Using Orthogonal Subscales,” Comput. Methods Appl. Mech. Eng., 191, 39–40, 4295 (Aug. 2002); https://doi.org/10.1016/S0045-7825(02)00337-7.
  • S. M. MODIRKHAZENI and J. P. TRELLES, “Algebraic Approximation of Sub-Grid Scales for the Variational Multiscale Modeling of Transport Problems,” Comput. Methods Appl. Mech. Eng., 306, Suppl. C, 276 (July 2016); https://doi.org/10.1016/j.cma.2016.03.041.
  • A. G. BUCHAN et al., “Riemann Boundary Conditions for the Boltzmann Transport Equation Using Arbitrary Angular Approximations,” Ann. Nucl. Energy, 38, 5, 1186 (May 2011); https://doi.org/10.1016/j.anucene.2010.11.019.
  • Y. WATANABE, “Discrete Cones Method in Two-Dimensional Neutron Transport Computation,” University of Wisconsin, Madison (Jan. 1984); https://www.osti.gov/biblio/5762743 (current as of Dec. 5, 2018).
  • P. K. ROMANO et al., “OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development,” Ann. Nucl. Energy, 82, Suppl. C, 90 (Aug. 2015); https://doi.org/10.1016/j.anucene.2014.07.048.
  • K. KOBAYASHI, N. SUGIMURA, and Y. NAGAYA, “3D Radiation Transport Benchmark Problems and Results for Simple Geometries with Void Region,” Prog. Nucl. Energy, 39, 2, 119 (Jan. 2001); https://doi.org/10.1016/S0149-1970(01)00007-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.