621
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Identifying Thermodynamic Mechanisms Affecting Reactor Pressure Vessel Integrity During Severe Nuclear Accidents Simulated by Laser Heating at the Laboratory Scale

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 381-397 | Received 06 Dec 2021, Accepted 29 Jul 2022, Published online: 08 Sep 2022

References

  • R. R. HOBBINS et al., “Molten Material Behavior in the Three Mile Island Unit 2 Accident,” Nucl. Technol., 87, 1005 (1989); https://doi.org/10.13182/NT89-A27692.
  • D. JACQUEMAIN et al., “Nuclear Power Reactor Core Melt Accidents: Current State of Knowledge,” Institut de Radioprotection et de Sûreté Nucléaire (2015); https://www.irsn.fr/EN/Research/publications-documentation/Scientific-books/ (current as of Dec. 6, 2021).
  • T. G. THEOFANOUS et al., “In-Vessel Coolability and Retention of a Core Melt,” Nucl. Eng. Des., 169, 1 (1997); https://doi.org/10.1016/S0029-5493(97)00009-5.
  • B. R. SEHGAL, “Accomplishments and Challenges of the Severe Accident Research,” Nucl. Eng. Des., 210, 79 (2001); https://doi.org/10.1016/S0029-5493(01)00433-2.
  • J. M. SEILER et al., “Theoretical Analysis for Corium Pool with Miscibility Gap,” Nucl. Technol., 141, 233 (2003); https://doi.org/10.13182/NT03-A3364.
  • J. M. SEILER et al., “Consequences of Material Effects on In-Vessel Retention,” Nucl. Eng. Des., 237, 1752 (2007); https://doi.org/10.1016/J.NUCENGDES.2007.03.007.
  • “Main Results of the First Phase of MASCA Project,” Organisation for Economic Co-operation and Development (2004).
  • R. O. GAUNTT et al., MELCOR Computer Code Manuals, U.S. Nuclear Regulatory Commission (2001).
  • J. P. VAN DORSSELAERE et al., “The ASTEC Integral Code for Severe Accident Simulation,” Nucl. Technol., 165, 293 (2009); https://doi.org/10.13182/NT09-A4102.
  • C. A. UTTON et al., “Laser Melting of Uranium Carbides,” J. Nucl. Mater., 385, 443 (2009); https://doi.org/10.1016/j.jnucmat.2008.12.031.
  • D. MANARA et al., “Laser-Heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident,” J. Vis. Exp., 130, e54807c (2017); https://doi.org/10.3791/54807.
  • M. J. WELLAND et al., “Co-Development of Experimental and Simulation Methods for the Laser Flash Heating and Melting Technique: The Thermoelastic Effects of UO2,” Int. J. Therm. Sci., 132, 174 (2018); https://doi.org/10.1016/j.ijthermalsci.2018.05.035.
  • D. P. DEWITT and G. D. NUTTER, Theory and Practice of Radiation Thermometry, John Wiley & Sons (1988).
  • G. NEUER et al., “Critical Analysis of the Different Methods of Multiwavelength Pyrometry,” Temperature: Its Measurement and Control in Science and Industry, Vol. 6, No. 1, pp. 787, J. F. SCHOOLEY, Ed., American Institute of Physics, New York (1992).
  • H. RICHTER, Z. P. WANG, and L. LEY, “The One Phonon Raman Spectrum in Microcrystalline Silicon,” Solid State Commun., 39, 625 (1981); https://doi.org/10.1016/0038-1098(81)90337-9.
  • D. MANARA et al., “Melting of Stoichiometric and Hyperstoichiometric Uranium Dioxide,” J. Nucl. Mater., 342, 148 (2005); https://doi.org/10.1016/J.JNUCMAT.2005.04.002.
  • D. MANARA et al., “New Techniques for High-Temperature Melting Measurements in Volatile Refractory Materials via Laser Surface Heating,” Rev. Sci. Instrum., 79, 113901 (2008); https://doi.org/10.1063/1.3005994.
  • H. F. JACKSON et al., “Laser Melting of Zirconium Carbide: Determination of Phase Transitions in Refractory Ceramic Systems,” J. Am. Ceram. Soc., 94, 3561 (2011); https://doi.org/10.1111/j.1551-2916.2011.04560.x.
  • O. CEDILLOS-BARRAZA et al., “Investigating the Highest Melting Temperature Materials: A Laser Melting Study of the TaC-HfC System,” Sci. Rep., 6, 37962 (2016); https://doi.org/10.1038/srep37962.
  • D. MANARA, “Melting Transition Measurements in Uranium Dioxide,” Warwick University (2004).
  • E. E. MOORE et al., “Development of a CALPHAD Thermodynamic Database for Pu-U-Fe-Ga Alloys,” Appl. Sci., 9, 5040 (2019); https://doi.org/10.3390/app9235040.
  • H. ABDI and L. J. WILLIAMS, “Principal Component Analysis,” WIREs Comput. Stat., 2, 433 (2010); https://doi.org/10.1002/wics.101.
  • D. MANARA and B. RENKER, “Raman Spectra of Stoichiometric and Hyperstoichiometric Uranium Dioxide,” J. Nucl. Mater., 321, 233 (2003); https://doi.org/10.1016/S0022-3115(03)00248-4.
  • H. OKAMOTO, “U-Zr (Uranium-Zirconium),” J. Phase Equilib. Diffus., 28, 499 (2007); https://doi.org/10.1007/s11669-007-9155-1.
  • N. ZOU et al., “Thermodynamic Assessment and Glass Forming Ability Prediction of the Zr-Fe-Cu System,” Calphad, 64, 175 (2019); https://doi.org/10.1016/j.calphad.2018.12.007.
  • A. CEZAIRLIYAN, J. L. MCCLURE, and A. P. MIILLER, “Radiance Temperatures (in the Wavelength Range 523–907 nm) of Group IVB Transition Metals Titanium, Zirconium, and Hafnium at Their Melting Points by a Pulse-Heating Technique,” Int. J. Thermophys., 15, 993 (1994); https://doi.org/10.1007/BF01447109.
  • M. STEINBRÜCK, “Degradation and Oxidation of B4C Control Rod Segments at High Temperatures,” J. Nucl. Mater., 400, 138 (2010); https://doi.org/10.1016/J.JNUCMAT.2010.02.022.
  • S. A. ARGYROPOULOS and P. G. SISMANIS, “The Solution Kinetics of Zirconium in Liquid Steel,” Steel Res., 68, 345 (1997); https://doi.org/10.1002/srin.199700564.
  • P. G. SISMANIS and S. A. ARGYROPOULOS, “Modelling of Exothermic Dissolution,” Can. Metall. Q., 27, 123 (1988); https://doi.org/10.1179/cmq.1988.27.2.123.
  • P. G. SISMANIS, “The Dissolution of Niobium and Zirconium in Liquid Steel,” McGill University (1987); http://digitool.library.mcgill.ca:80/R/-?func=dbin-jump-full&object_id=28391&silo_library=GEN01 (current as of Dec. 6, 2021).
  • A. PIVANO et al., “Experiments on Interactions of Molten Steel with Suboxidized Corium Crust for In-Vessel Melt Retention,” Nucl. Eng. Des., 355, 110271 (2019); https://doi.org/10.1016/j.nucengdes.2019.110271.
  • T. PAVLOV et al., “A New Numerical Method and Modified Apparatus for the Simultaneous Evaluation of Thermo-Physical Properties Above 1500K: A Case Study on Isostatically Pressed Graphite,” Thermochim. Acta, 652, 39 (2017); https://doi.org/10.1016/j.tca.2017.03.004.