246
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Variance Reduction and Noise Source Sampling Techniques for Monte Carlo Simulations of Neutron Noise Induced by Mechanical Vibrations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 534-557 | Received 20 Jul 2022, Accepted 12 Sep 2022, Published online: 09 Dec 2022

References

  • M. M. R. WILLIAMS, Random Processes in Nuclear Reactors, Pergamon Press, Oxford (1974).
  • J. A. THIE, Power Reactor Noise, American Nuclear Society, La Grange Park, Illinois (1981).
  • I. PÁZSIT and C. DEMAZIÈRE, “Noise Techniques in Nuclear Systems,” Handbook of Nuclear Engineering, Chap. 14, pp. 1629–1737, D. CACUCI, Ed., Springer Verlag (2010).
  • M. SEIDL et al., “Review of the Historic Neutron Noise Behavior in German KWU Built PWRs,” Prog. Nucl. Energy, 85, 668 (2015); https://doi.org/10.1016/j.pnucene.2015.08.016.
  • K. BEHRIGUER, G. KOSÁLY, and L. KOSTIC, “Reactivity and Neutron Density Noise Excited by Random Rod Vibration,” Ann. Nucl. Energy, 63, 306 (1977).
  • D. N. FRY, J. MARCH-LEUBA, and F. J. SWEENEY, “Use of Neutron Noise of Diagnosis of In-Vessel Anomalies in Light-Water Reactors,” ORNL/TM-8774, Oak Ridge National Laboratory (1986).
  • I. PÁZSIT and G. T. ANALYTIS, “Theoretical Investigation of the Neutron Noise Diagnostics of Two-Dimensional Control Rod Vibrations in a PWR,” Ann. Nucl. Energy, 7, 3, 171 (1980); https://doi.org/10.1016/0306-4549(80)90082-1.
  • G. KOSÁLY, “Noise Investigations in Boiling-Water and Pressurized-Water Reactors,” Prog. Nucl. Energy, 5, 2, 145 (1980); https://doi.org/10.1016/0149-1970(80)90004-9.
  • I. PÁZSIT et al., “Development of a New Method to Determine the Axial Void Velocity Profile in BWRs from Measurements of the In-Core Neutron Noise,” Prog. Nucl. Energy, 138, 103805 (2021); https://doi.org/10.1016/j.pnucene.2021.103805.
  • V. ARZHANOV and I. PÁZSIT, “Diagnostics of Core Barrel Vibrations by In-Core and Ex-Core Neutron Noise,” Prog. Nucl. Energy, 43, 1, 151 (2003); https://doi.org/10.1016/S0149-1970(03)00023-4.
  • I. PÁZSIT, “The Linearization of Vibration-Induced Noise,” Ann. Nucl. Energy, 11, 9, 441 (1984); https://doi.org/10.1016/0306-4549(84)90063-X.
  • I. PÁZSIT and J. KARLSSON, “On the Perturbative Calculation of the Vibration Noise by Strong Absorber,” Ann. Nucl. Energy, 24, 6, 449 (1996); https://doi.org/10.1016/S0306-4549(96)00081-3.
  • A. JONSSON et al., “Analytical Investigation of the Properties of the Neutron Noise Induced by Vibrating Absorber and Fuel Rods,” Kerntechnik, 77, 5, 371 (2012); https://doi.org/10.3139/124.110258.
  • T. YAMAMOTO and H. SAKAMOTO, “Decomposition of Neutron Noise in a Reactor into Higher-Order Mode Components and Investigation of the Space and Frequency Dependence,” Prog. Nucl. Energy, 117, 103098 (2019); https://doi.org/10.1016/j.pnucene.2019.103098.
  • I. PÁZSIT and V. DYKIN, “The Role of the Eigenvalue Separation in Reactor Dynamics and Neutron Noise Theory,” J. Nucl. Sci. Technol., 55, 5, 484 (2018); https://doi.org/10.1080/00223131.2017.1412366.
  • A. ZOIA et al., “Analysis of the Neutron Noise Induced by Fuel Assembly Vibrations,” Ann. Nucl. Energy, 154, 108061 (2021); https://doi.org/10.1016/j.anucene.2020.108061.
  • C. DEMAZIÈRE, A. ROUCHON, and A. ZOIA, “Understanding the Neutron Noise Induced by Fuel Assembly Vibrations in Linear Theory,” Ann. Nucl. Energy, 175, 109169 (2022); https://doi.org/10.1016/j.anucene.2022.109169.
  • U. ROHDE et al., “Neutron Noise Observations in German KWU Built PWRs and Analyses with the Reactor Dynamics Code DYN3D,” Ann. Nucl. Energy, 112, 715 (2018); https://doi.org/10.1016/j.anucene.2017.10.033.
  • C. DEMAZIÈRE, “CORESIM: A Multi-Purpose Neutronic Tool for Research and Education,” Ann. Nucl. Energy, 38, 12, 2698 (2011); https://doi.org/10.1016/j.anucene.2011.06.010.
  • T. YAMAMOTO, “Monte Carlo Method with Complex-Valued Weights for Frequency Domain Analyses of Neutron Noise,” Ann. Nucl. Energy, 58, 72 (2013); https://doi.org/10.1016/j.anucene.2013.03.002.
  • A. ROUCHON, A. ZOIA, and R. SANCHEZ, “A New Monte Carlo Method for Neutron Noise Calculations in the Frequency Domain,” Ann. Nucl. Energy, 102, 465 (2017); https://doi.org/10.1016/j.anucene.2016.11.035.
  • N. OLMO-JUAN et al., “PARCS vs CORE SIM Neutron Noise Simulations,” Prog. Nucl. Energy, 115, 169 (2019); https://doi.org/10.1016/j.pnucene.2019.03.041.
  • A. VIDAL-FERRÁNDIZ et al., “A Time and Frequency Domain Analysis of the Effect of Vibrating Fuel Assemblies on the Neutron Noise,” Ann. Nucl. Energy, 137, 107076 (2020); https://doi.org/10.1016/j.anucene.2019.107076.
  • D. CHIONIS et al., “Development and Verification of a Methodology for Neutron Noise Response to Fuel Assembly Vibrations,” Ann. Nucl. Energy, 147, 107669 (2020); https://doi.org/10.1016/j.anucene.2020.107669.
  • C. DEMAZIÈRE et al., “Overview of the CORTEX Project,” Proc. PHYSOR 2018, Cancun, Mexico, April 22–26, 2018.
  • H. YI, P. VINAI, and C. DEMAZIÈRE, “On the Simulation of Neutron Noise Using a Discrete Ordinates Method,” Ann. Nucl. Energy, 164, 108570 (2021); https://doi.org/10.1016/j.anucene.2021.108570.
  • T. YAMAMOTO, “Implementation of a Frequency-Domain Neutron Noise Analysis Method in a Production-Level Continuous Energy Monte Carlo Code: Verification and Application to a BWR,” Ann. Nucl. Energy, 115, 494 (2018); https://doi.org/10.1016/j.anucene.2018.02.008.
  • A. ROUCHON, W. JARRAH, and A. ZOIA, “The New Neutron Noise Solver of the Monte Carlo Code TRIPOLI-4,” Proc. M&C 2019, Portland, Oregon, August 25–29. 2019, American Nuclear Society (2019).
  • A. MYLONAKIS et al., “Neutron Noise Simulations in a Heterogeneous System: A Comparison Between a Diffusion-Based and a Discrete Ordinates Solver,” Proc. M&C 2019, Portland, Oregon, August 25–29. 2019, American Nuclear Society (2019).
  • P. VINAI et al., “Comparison of Neutron Noise Solvers Based on Numerical Benchmarks in a 2-D Simplified UOX Fuel Assembly,” Proc. M&C 2021, Virtual Meeting, October 3–7, 2021, American Nuclear Society (2021).
  • P. VINAI et al., “On the Simulation of Neutron Noise Induced by Vibrations of Fuel Pins in a Simplified Fuel Assembly,” Ann. Nucl. Energy , 181 (2023); https://doi.org/10.1016/j.anucene.2022.109521.
  • V. LAMIRAND et al., “Neutron Noise Experiments in the AKR-2 and CROCUS Reactors for the European Project CORTEX,” EPJ Web Conf., 225, 04023 (2020); https://doi.org/10.1051/epjconf/202022504023.
  • A. G. MYLONAKIS et al., “CORE SIM+ Simulations of COLIBRI Fuel Rods Oscillation Experiments and Comparison with Measurements,” EPJ Web Conf., 247, 21006 (2021); https://doi.org/10.1051/epjconf/202124721006.
  • H. BELANGER, D. MANCUSI, and A. ZOIA, “Exact Weight Cancellation in Monte Carlo Eigenvalue Transport Problems,” Phys. Rev. E, 104, 1, 015306 (2021); https://doi.org/10.1103/PhysRevE.104.015306.
  • H. BELANGER, D. MANCUSI, and A. ZOIA, “Solving Eigenvalue Transport Problems with Negative Weights and Regional Cancellation,” Proc. M&C 2021, Virtual Meeting, October 3–7, 2021, American Nuclear Society (2021).
  • H. BELANGER, D. MANCUSI, and A. ZOIA, “Variance Reduction Techniques for Monte Carlo Neutron Noise Simulations,” Proc. PHYSOR 2022, Pittsburgh, Pennsylvania, May 15–20, 2022, American Nuclear Society (2022).
  • I. PÁZSIT, “Investigation of the Space-Dependent Noise Induced by a Vibrating Absorber,” Atomkernenergie, 30, 29 (1977).
  • M. FAUCHER, D. MANCUSI, and A. ZOIA, “New Kinetic Simulation Capabilities for Tripoli-4®: Methods and Applications,” Ann. Nucl. Energy, 120, 74 (2018); https://doi.org/10.1016/j.anucene.2018.05.030.
  • E. BRUN et al., “TRIPOLI-4®, CEA, EDF and AREVA Reference Monte Carlo Code,” Ann. Nucl. Energy, 82, 151 (2015); https://doi.org/10.1016/j.anucene.2014.07.053.
  • L. L. CARTER, E. D. CASHWELL, and W. M. TAYLOR, “Monte Carlo Sampling with Continuously Varying Cross Sections Along Flight Paths,” Nucl. Sci. Eng., 48, 4, 403 (1972); https://doi.org/10.13182/NSE72-1.
  • D. LEGRADY et al., “Woodcock Tracking with Arbitrary Sampling Cross Section Using Negative Weights,” Ann. Nucl. Energy, 102, 116 (2017); https://doi.org/10.1016/j.anucene.2016.12.003.
  • T. E. BOOTH, “Computing the Higher k-Eigenfunctions by Monte Carlo Power Iteration: A Conjecture,” Nucl. Sci. Eng., 143, 3, 291 (2003); https://doi.org/10.13182/NSE02-10TN.
  • T. YAMAMOTO, “Convergence of the Second Eigenfunction in Monte Carlo Power Iteration,” Ann. Nucl. Energy, 36, 1, 7 (2009); https://doi.org/10.1016/j.anucene.2008.11.004.
  • T. YAMAMOTO, “Monte Carlo Algorithm for Buckling Search and Neutron Leakage-Corrected Calculations,” Ann. Nucl. Energy, 47, 14 (2012); https://doi.org/10.1016/j.anucene.2012.04.017.
  • T. YAMAMOTO, “Monte Carlo Method with Complex Weights for Neutron Leakage-Corrected Calculations and Anisotropic Diffusion Coefficient Generations,” Ann. Nucl. Energy, 50, 141 (2012); https://doi.org/10.1016/j.anucene.2012.06.025.
  • P. ZHANG, H. LEE, and D. LEE, “A General Solution Strategy of Modified Power Method for Higher Mode Solutions,” J. Comput. Phys., 305, 387 (2016); https://doi.org/10.1016/j.jcp.2015.10.042.
  • T. E. BOOTH and J. E. GUBERNATIS, “Exact Regional Monte Carlo Weight Cancellation for Second Eigenfunction Calculations,” Nucl. Sci. Eng., 165, 3, 283 (2010); https://doi.org/10.13182/NSE09-62.
  • E. R. WOODCOCK et al., “Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry,” ANL–7050, Argonne National Laboratory (1965).
  • J. LEPPÄNEN, “On the Use of Delta-Tracking and the Collision Flux Estimator in the Serpent 2 Monte Carlo Particle Transport Code,” Ann. Nucl. Energy, 105, 161 (2017); https://doi.org/10.1016/j.anucene.2017.03.006.
  • H. BELANGER, D. MANCUSI, and A. ZOIA, “Unbiasedness and Optimization of Regional Weight Cancellation,” Phys. Rev. E, 106, 2, 025302 (2022); https://doi.org/10.1103/PhysRevE.106.025302.
  • H. BELANGER, “MGMC,” 2022, v0.2.0; https://github.com/HunterBelanger/mgmc (current as of July 20, 2022).
  • C. R. HARRIS et al., “Array Programming with NumPy,” Nature, 585, 7825, 357 (2020).
  • A. ROUCHON, “Analyse et développement d’outils numériques déterministes et stochastiques résolvant les équations du bruit neutronique et applications aux réacteurs thermiques et rapides,” PhD Dissertation, Université Paris-Saclay (2016).
  • D. SCHNEIDER et al., “APOLLO3: CEA/DEN Deterministic Multi-Purpose Code for Reactor Physics Analysis,” Proc. PHYSOR 2016, Sun Valley, Idaho, May 1–5, 2016, American Nuclear Society (2016).
  • A. ROUCHON, M. V. LE BRUN, and A. ZOIA, “Analysis and Comparison of APOLLO3 and TRIPOLI-4 Neutron Noise Solvers,” EPJ Web Conf., 247, 21002 (2021); https://doi.org/10.1051/epjconf/202124721002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.