343
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

Radiolytic Production of Fluorine Gas from MSR Relevant Fluoride Salts

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 633-646 | Received 30 Jun 2022, Accepted 19 Sep 2022, Published online: 04 Nov 2022

References

  • H. KAMIDE et al., “Generation IV International Forum-GIF,” Annual Report 2020 INIS-FR-21-0718, Organisation for Economic Co-operation and Development (2021).
  • T. DOLAN, Molten Salt Reactors and Thorium Energy, Woodhead Publishing Series in Energy, Elsevier Science (2017).
  • D. LEBLANC, “Molten Salt Reactors: A New Beginning for an Old Idea,” Nucl. Eng. Des., 240, 6, 1644 (2010);); https://doi.org/10.1016/j.nucengdes.2009.12.033.
  • J. SERP et al., “The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives,” Prog. Nucl. Energy, 77, 308 (2014)); https://doi.org/10.1016/j.pnucene.2014.02.014.
  • H. MACPHERSON, “Molten-Salt Reactors,” Proc. Int. Conf. Constructive Uses of Atomic Energy, Washington, D.C., 1968.
  • Y. EKMANIS, “Radiolysis Behaviour in Alkali Halide Crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B, 1, 2–3, 473 (1984); https://doi.org/10.1016/0168-583X(84)90111-3.
  • V. DUBINKO et al., “Modeling of the Radiation-Induced Microstructural Evolution in Ionic Crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B. 153, 1–4, 163 (1999); https://doi.org/10.1016/S0168-583X(99)00043-9.
  • V. DUBINKO et al., “Theory of the Late Stage of Radiolysis of Alkali Halides,” J. Nucl. Mater., 277, 2–3, 184 (2000); https://doi.org/10.1016/S0022-3115(99)00207-X.
  • A. LIDIARD, “The Radiolysis of Alkali Halides—The Nucleation and Growth of Aggregates,” Z. Phys. Chem., 206, 1–2, 219 (1998); https://doi.org/10.1524/zpch.1998.206.Part12.219.
  • A. TURKIN et al., “Radiolysis of NaCl at High and Low Temperatures: Development of Size Distribution of Bubbles and Colloids,” J. Phys.: Condens. Matter, 18, 24, 5655 (2006); https://doi.org/10.1088/0953-8984/18/24/007.
  • C. CATLOW, K. DILLER, and L. HOBBS, “Irradiation-Induced Defects in Alkali Halide Crystals,” Philos. Mag. A, 42, 2, 123 (1980); https://doi.org/10.1080/01418618009365806.
  • V. DUBINKO et al., “New Mechanism for Radiation Defect Production and Aggregation in Crystalline Ceramics,” J. Nucl. Mater., 289, 1–2, 86 (2001); https://doi.org/10.1016/S0022-3115(00)00686-3.
  • V. DUBINKO et al., “A New Mechanism for Radiation Damage Processes in Alkali Halides,” J. Appl. Phys., 86, 11, 5957 (1999); https://doi.org/10.1063/1.371639.
  • N. GAO et al., “Loop-Punching Suppression Induced by Growth of Helium Bubble Pair in Tungsten,” J. Appl. Phys., 124, 23, 235105 (2018); https://doi.org/10.1063/1.5053138.
  • V. DUBINKO, D. VAINSHTEIN, and H. DEN HARTOG, “Mechanism of Void Growth in Irradiated NaCl Based on Exiton-Induced Formation of Divacancies at Dislocations,” Nucl. Instrum. Methods Phys. Res. Sect. B, 228, 1–4, 304 (2005); https://doi.org/10.1016/j.nimb.2004.10.061.
  • P. CALL, W. HAYES, and M. KABLER, “Optical Detection of Exciton EPR in Fluorite Crystals,” J. Phys. C: Solid State Phys., 8, 4, L60 (1975); https://doi.org/10.1088/0022-3719/8/4/006.
  • A. EGRANOV et al., “Radiation Defects in CaF2 and SrF2 Crystals Doped with Cadmium or Zinc,” J. Phys.: Condens. Matter, 20, 46, 465213 (2008); https://doi.org/10.1088/0953-8984/20/46/465213.
  • A. RAMOS-BALLESTEROS et al., “Gamma Radiation-Induced Defects in KCl, MgCl2, and ZnCl2 Salts at Room Temperature,” Phys. Chem. Chem. Phys., 23, 17, 10384 (2021); https://doi.org/10.1039/D1CP00520K.
  • P. HANIA et al., “SaLIENT-01: Preparation and Start of Irradiation of Thorium-Bearing Molten Fluoride Salt in Graphite Crucibles,” Proc. Int. Nuclear Fuel Cycle Conf. and TOP FUEL 2019—Light Water Reactor Fuel Performance Conf. 2020, Seattle, Washington, September 22–27, 2019, p. 285, American Nuclear Society (2020).
  • M. ROSENTHAL, R. BRIGGS, and P. KASTEN, “Molten-Salt Reactor Program Semiannual Progress Report for Period Ending February 28, 1969,” ORNL-4396, Oak Ridge National Laboratory (1969).
  • P. HAUBENREICH, “Fluorine Production and Recombination in Frozen MSR Salts After Reactor Operation.” ORNL-TM-3144, Oak Ridge National Laboratory (1970).
  • A. ICENHOUR et al., “An Overview of Radiolysis Studies for the Molten Salt Reactor Remediation Project,” Proc. Int. Conf. Global 2001, Paris, France, September 9–13, 2001.
  • D. WILLIAMS, G. D. CUL, and L. TOTH, “A Descriptive Model of the Molten Salt Reactor Experiment After Shutdown: Review of FY 1995 Progress,” ORNL/TM-13142, Oak Ridge National Laboratory (1996).
  • D. WILLIAMS and J. BRYNESTAD, “Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt,” ORNL/TM-13770, Oak Ridge National Laboratory (1999).
  • L. TOTH and L. FELKER, “Fluorine Generation by Gamma Radiolysis of a Fluoride Salt Mixture,” Radiat. Eff. Defects Solids, 112, 4, 201 (1990); https://doi.org/10.1080/10420159008213046.
  • K. KVASHNINA et al., “Chemical State of Complex Uranium Oxides,” Phys. Rev. Lett., 111, 25, 253002 (2013); https://doi.org/10.1103/PhysRevLett.111.253002.
  • G. LEINDERS et al., “Evolution of the Uranium Chemical State in Mixed-Valence Oxides,” Inorg.Chem., 56, 12, 6784 (2017); https://doi.org/10.1021/acs.inorgchem.7b01001.
  • K. DE REUCK, “Fluorine International Thermodynamic Tables of the Fluid State,” Vol-11, IUPAC Chemical Data Series No. 36, International Union of Pure and Applied Chemistry (1990).
  • H. ESLAMI and A. BOUSHEHRI, “The Equation of State of Song and Mason Applied to Fluorine,” Int. J. Thermophys., 20, 2, 611 (1999); https://doi.org/10.1023/A:1022665323146.
  • “MCNPTM—A General Monte Carlo N-Particle Transport Code,” J. F. BRIESMEISTER, Ed., Version 4C, LA-13709-M, Los Alamos National Laboratory (2000).
  • R. FORREST, “ FISPACT-2007: User Manual,” UKAEA-FUS-534, UKAEA Fusion Association (2007).
  • R. BRIGGS, “Molten-Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964,” ORNL-3708, Oak Ridge National Laboratory (1964).
  • V. IGNATIEV, “Molten Salts Characteristics Under Irradiation in Fission Related Systems,” IAEA-TECDOC 1912, p. 70, International Atomic Energy Agency (2020).
  • E. KOTOMIN, M. ZAISER, and W. SOPPE, “A Mesoscopic Approach to Radiation-Induced Defect Aggregation in Alkali Halides Stimulated by the Elastic Interaction of Mobile Frenkel Defects,” Philos. Mag. A, 70, 2, 313 (1994); https://doi.org/10.1080/01418619408243187.
  • V. V. GROMOV, “Effect of Impurities on Radiation-Chemical Processes in Crystals of Inorganic Salts,” Russian Chem. Rev., 43, 2, 79 (1974); https://doi.org/10.1070/RC1974v043n02ABEH001791.
  • A. ICENHOUR, “Radiolytic Effects on Fluoride Impurities in a U3O8 Matrix,” ORNL/TM-2000/157, Oak Ridge National Laboratory (2000).
  • V. BOLDYREV and L. BYSTRYKH, “The Chemical Action of Ionising Radiations on Inorganic Crystals,” Russian Chem. Rev., 32, 8, 426 (1963); https://doi.org/10.1070/RC1963v032n08ABEH001352.
  • C. B. LUSHCHIK, I. VITOL, and M. ELANGO, “Decay of Electronic Excitations into Radiation Defects in Ionic Crystals,” Sov. Phys. Usp., 20, 6, 489 (1977); https://doi.org/10.1070/PU1977v020n06ABEH005405.
  • G. BOYD, E. W. GRAHAM, and Q. LARSON, “Recoil Reactions High Intensity Slow Neutron Sources. IV. The Radiolysis of Crystalline Alkali Metal Bromates with γ-Rays,” J. Phys Chem., 66, 2, 300 (1962); https://doi.org/10.1021/j100808a026.
  • L. MEI et al., “Investigation of Thermal Neutron Scattering Data for BeF2 and LiF Crystals,” J. Nucl. Sci. Technol., 50, 4, 419 (2013); https://doi.org/10.1080/00223131.2013.773169.
  • D. VAINSHTEIN et al., “Effect of the Void Formation on the Explosive Fracture of Electron Irradiated NaCl Crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B, 166, 550 (2000); https://doi.org/10.1016/S0168-583X(99)00717-X.
  • A. TURKIN, et al., “Kinetics of Back Reaction Between Radiolytic Products Initiated by Radiation-Induced Voids in NaCl,” J. Phys.: Condens. Matter., 13, 1, 203 (2001); https://doi.org/10.1088/0953-8984/13/1/321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.