267
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of Quantum Oscillations in the Thermal Scattering Law of Zirconium Carbide on Neutron Thermalization and Criticality

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1800-1813 | Received 18 Aug 2022, Accepted 17 Oct 2022, Published online: 23 Jan 2023

References

  • Y. KATOH et al., “Properties of Zirconium Carbide for Nuclear Fuel Applications,” J. Nucl. Mater., 441, 718 (2013); https://doi.org/10.1016/j.jnucmat.2013.05.037.
  • NATIONAL ACADEMIES OF SCIENCES, Engineering, and Medicine, Space Nuclear Propulsion for Human Mars Exploration, The National Academic Press, Washington, D.C. (2021); https://doi.org/10.17226/25977.
  • L. L. LYON, “Performance of (U,Zr)C-Graphite (Composite) and (U,Zr)C (Carbide) Fuel Elements in the Nuclear Furnace 1 Test Reactor,” LA-5398-MS, Los Alamos Scientific Laboratory (Sep. 1973).
  • F. C. DIFILIPPO and J. P. RENIER, “Double Differential Neutron Scattering Cross Sections of Materials for Ultra High Temperature Reactors,” Ann. Nucl. Energy, 34, 130 (2007); https://doi.org/10.1016/j.anucene.2006.10.005.
  • N. C. FLEMING et al., “FLASSH 1.0 Full Law Analysis Scattering Hub,” Trans. Am. Nucl. Soc., 125, 704 (2022); https://doi.org/10.13182/T125-36957.
  • J. L. WORMALD, A. I. HAWARI, and M. L. ZERKLE, “Impact of Magnetic Structure and Thermal Effects on Vibrational Excitations and Neutron Scattering in Uranium Mononitride,” Ann. Nucl. Energy, 143, 107447 (2020); https://doi.org/10.1016/j.anucene.2020.107447.
  • D. A. BROWN et al., “ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-Project Cross Sections, New Standards and Thermal Scattering Data,” Nucl. Data Sheets, 148, 1 (2018); https://doi.org/10.1016/j.nds.2018.02.001.
  • W. L. WHITTEMORE, “Neutron Interactions in Zirconium Hydride,” GA-4490, General Atomics (Feb. 1964).
  • G. B. WEST et al., “Kinetic Behavior of TRIGA Reactors,” GA-7882, General Atomics (Mar. 1967).
  • G. KRESSE and J. FURHTMÜLLER, “Efficient Iterative Schemes for Ab Initio Total Energy Calculations Using a Plane-Wave Basis Set,” Phys. Rev. B, 54, 11169 (1996); https://link.aps.org/doi/10.1103/PhysRevB.54.11169.
  • MedeA Version 3.0 website, Materials Design, Inc. (2019).
  • G. KRESSE and D. JOUBERT, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Phys. Rev. B, 59, 1758 (1999); https://link.aps.org/doi/10.1103/PhysRevB.59.1758.
  • J. P. PERDEW, K. BURKE, and M. ERNZERHOF, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.
  • R. V. SARA, “The System Zirconium-Carbon,” J. Am. Ceram. Soc., 48, 5, 243 (1965); https://doi.org/10.1111/j.1151-2916.1965.tb14729.x.
  • H. G. SMITH, N. WAKABAYASHI, and M. MOSTOLLER, “Phonon Anomalies in Transition Metals, Alloys and Compounds,” Superconductivity in d- and f-Band Metals, p. 223, Spinger, Boston, Massachusetts (1976).
  • A. C. LAWSON et al., “Thermal Expansion of Atomic Vibrations of Zirconium Carbide to 1600 K,” Philos. Mag., 87, 17, 2507 (2007); https://doi.org/10.1080/14786430701227548.
  • A. I. HAWARI et al., “Ab Initio Generation of Thermal Neutron Scattering Cross Sections,” Proc. PHYSOR 2004, Chicago, Illinois, April 25–29, 2004.
  • K. PARLINKSI, Z. Q. LI, and Y. KAWAZOE, “First-Principles Determination of the Soft Mode in Cubic ZrO2,” Phys. Rev. Lett., 78, 4063 (1997); https://doi.org/10.1103/PhysRevLett.78.4063.
  • P. T. JOCHYM and K. PARLINKSI, “Ab Initio Lattice Dynamics and Elastic Constants of ZrC,” Eur. Phys. J. B, 15, 265 (2000); https://doi.org/10.1007/s100510051124.
  • J. A. JACKMAN et al., “Systematic Study of the Lattice Dynamics of the Uranium Rocksalt-Structure Compounds,” Phys. Rev. B, 10, 7144 (1986); https://doi.org/10.1103/PhysRevB.33.7144.
  • J. WORMALD, M. ZERKLE, and J. HOLMES, “Generation of the TSL for Zirconium Hydrides from Ab Initio Methods,” J. Nucl. Eng., 2, 2, 105 (2021); https://doi.org/10.3390/jne2020011.
  • M. L. ZERKLE and J. C. HOLMES, “The Thermal Neutron Scattering Law for Hydrogen Bound in Plutonium Dihydride and Predicted Critical Mass for Several Configurations,” Proc. 2017 Nuclear Criticality Safety Division Topl. Mtg., Carlsbad, New Mexico, September 10–15, 2017.
  • M. ZERKLE and J. HOLMES, “A Thermal Neutron Scattering Law for Yttrium Hydride,” EPJ Web Conf., 146, 13005 (2017); https://doi.org/10.1051/epjconf/201714613005.
  • A. I. HAWARI, “Modern Techniques for Inelastic Thermal Neutron Scattering Analysis,” Nucl. Data Sheets, 118, 172 (2014); https://doi.org/10.1016/j.nds.2014.04.029.
  • R. E. MACFARLANE, “New Thermal Neutron Scattering Files for ENDF/B-VI Release 2,” LA-12639-MS, Los Alamos National Laboratory (Mar. 1994).
  • A. TRKOV and D. A. BROWN, “ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files,” CSEWG Document ENDF-102, BNL-203218-2018-INRE, Brookhaven National Laboratory (Jan. 2018).
  • M. L. ZERKLE, “TSL Mixed Elastic Scattering Format, November 30– December 4, 2020,” CSWEG; https://indico.bnl.gov/event/7233/contributions/43822.
  • J. S. COURSEY et al., “Atomic Weights and Isotopic Compositions (Version 4.1),” National Institute of Standards and Technology (2015); http://physics.nist.gov/Comp.
  • V. F. SEARS, “Neutron Scattering Lengths and Cross Sections,” Neutron News, 29, 26 (1992); https://doi.org/10.1080/10448639208218770.
  • W. SCHWEIKA, Disordered Alloys, Chap. 2, pp. 8–11, Springer-Verlag, Berlin, Germany (1998).
  • D. P. GRIESHEIMER et al., “MC21 v6.0—A Continuous-Energy Monte Carlo Particle Transport Code with Integrated Reactor Feedback Capabilities,” Ann. Nucl. Energy, 82, 29 (2015); https://doi.org/10.1016/j.anucene.2014.08.020.
  • C. T. BALLINGER, “The Direct S(α,β) Method for Thermal Neutron Scattering,” Proc. Int. Conf. Mathematics, Computational Methods, and Reactor Physics and Envronmental Analysis, Portland, Oregon, 1995.
  • J. L. WORMALD, J. T. THOMPSON, and T. H. TRUMBULL, “Implementation of an Adaptive Energy Grid Routine in NDEX for the Processing of Thermal Neutron Scattering Cross Sections,” Ann. Nucl. Energy, 149, 107773 (2020); https://doi.org/10.1016/j.anucene.2020.107773.
  • T. H. TRUMBULL, “Computational Methods Used to Process Thermal Neutron Scattering Data for Use in Continuous Energy Monte Carlo Codes,” Proc. PHYSOR 2016, Sun Valley, Idaho, May 1–5, 2016.
  • D. D. L. CHUNG, “Review of Graphite,” J. Mater. Sci., 37, 1475 (2002); https://doi.org/10.1023/A:1014915307738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.