183
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Generation IV Nuclear Reactor: Coolant Materials in the Supercritical State

ORCID Icon & ORCID Icon
Pages 1491-1505 | Received 15 Aug 2022, Accepted 10 Nov 2022, Published online: 30 Jan 2023

References

  • V. K. SEMENCHENKO, Selected Topics of Theoretical Physics, Proveshenie Publication, Moscow (1966).
  • R. BALASUBRAMANIAN, “Correlations of Supercritical Temperature of Fluid Alkali Metals,” Asia-Pacific J. Chem. Eng., 3, 1, 90 (2008); https://doi.org/10.1002/apj.107.
  • D. N. KAGAN, G. A. KRECHETOVA, and E. E. SHPIL’RAIN, “Development and Experimental Verification of a Method for Assessment of Consistency of the Thermodynamic and Structural Properties of Binary Coolants Based on Systems of Alkali Metals,” High Temp., 48, 4, 506 (2010); https://doi.org/10.1134/S0018151X10040073.
  • A. V. MOKSHIN et al., “Universality of Microscopic Structural and Dynamic Features in Liquid Alkali Metals near the Melting Point,” JETP Lett., 106, 6, 366 (2017); https://doi.org/10.1134/S0021364017180096.
  • E. D. SOLDATOVA and T. E. GALACHENKO, “Some Features of Metal Cerium Asymptotical Behavior,” Cond. Mat. Phys., 9, 115 (2006); http://www.icmp.lviv.ua/journal/zbirnyk.45/014/art14.pdf.
  • G. ANNOHENE and G. C. TEPPER, “Efficient Perovskite Solar Cells Processed in Supercritical Carbon Dioxide,” J. Supercrit. Fluids, 171, 105203 (2021); https://doi.org/10.1016/j.supflu.2021.105203.
  • A. CARIO et al., “Supercritical Carbon Dioxide-Based Cleaning and Sterilization Treatments for the Reuse of Filtering Facepiece Respirators FFP2 in the Context of COVID-19 Pandemic,” J. Supercrit. Fluids, 180, 105428 (2022); https://doi.org/10.1016/j.supflu.2021.105428.
  • S.-C. LEE et al., “Supercritical Carbon Dioxide Extraction of Squalene Rich Cod Liver Oil: Optimization, Characterization and Functional Properties,” J. Supercrit. Fluids, 188, 105693 (2022); https://doi.org/10.1016/j.supflu.2022.105693.
  • K. OPWIS et al., “Metallization of PET Fibers in Supercritical Carbon Dioxide and Potential Applications in the Textile Sector,” J. Supercrit. Fluids, 191, 105722 (2022); https://doi.org/10.1016/j.supflu.2022.105722.
  • Y.-Y. ZHU et al., “The Adsorption Behavior and Phase Transfer Catalytic Fixation of a Special Dye SCF-AOL2 on Cotton in Supercritical Carbon Dioxide,” J. Supercrit. Fluids, 188, 105651 (2022); https://doi.org/10.1016/j.supflu.2022.105651.
  • S. WYK et al., “Supercritical Water Desalination (SCWD) of Multi-Component Brines,” J. Supercrit. Fluids, 188, 105687 (2022); https://doi.org/10.1016/j.supflu.2022.105687.
  • Q. CHEN et al., “Simultaneous Treatment of Copper Wastewater and Biomass Waste in Supercritical Water,” J. Supercrit. Fluids, 138, 143 (2018); https://doi.org/10.1016/j.supflu.2018.04.014.
  • B. LI, Y. HAKUTA, and H. HAYASHI, “Hydrothermal Synthesis of KNbO3 Powders in Supercritical Water and Its Nonlinear Optical Properties,” J. Supercrit. Fluids, 35, 3, 254 (2005); https://doi.org/10.1016/j.supflu.2005.02.005.
  • J. V. NIEUWENHUYSE, S. LECOMPTE, and M. D. PAEPE, “Supercritical Heat Transfer to Refrigerants: Advances on a New Experimental Test Rig,” Proc. 6th Int. Seminar ORC Power Systems,” Munich, Germany, October 11–13, 2021; https://biblio.ugent.be/publication/8725833/file/8725834.pdf.
  • E. A. REBELATTO et al., “Determination of High-Pressure Phase Equilibrium Data of Systems Containing Supercritical Carbon Dioxide and Globalide,” J. Supercrit. Fluids, 166, 104996 (2020); https://doi.org/10.1016/j.supflu.2020.104996.
  • F. C. ZACCONI et al., “Experimental Solubility Data of Two Solid Derivatives of Menadione in Supercritical Carbon Dioxide: 2-((4-chlorobenzyl)amino)-3-methylnaphtalene-1,4-dione, and 2-((4-chlorophenethyl)amino)-3-methylnaphtalene-1,4-dione,” J. Supercrit. Fluids, 157, 104707 (2020); https://doi.org/10.1016/j.supflu2019.104707.
  • A. PARAHOVNIK, P. AHMED, and Y. PELES, “Two-Phase Flow, Pressure Drop, and Joule-Thomson Effect in a Micro-Orifice with Trans Critical Carbon Dioxide Flow,” J. Supercrit. Fluids, 188, 105649 (2022); https://doi.org/10.1016/j.supflu.2022.105649.
  • X. DING et al., “Experimental-Computational Approach for Elucidating the Dissolution Behavior of Potassium Phosphates in Near- and Supercritical Water,” J. Supercrit. Fluids, 181, 105488 (2022); https://doi.org/10.1016/j.supflu.2021.105488.
  • H. HAN and C. ZHANG, “Numerical Investigations of the Effect of Operation Conditions on the Heat Transfer of the Supercritical Water in the Canadian SCWR Fuel Bundle,” J. Supercrit. Fluids, 191, 105760 (2022); https://doi.org/10.1016/j.supflu.2022.105760.
  • X. LI et al., “Numerical Investigation of Heat Transfer Characteristics Between Two Particles and Supercritical Water,” J. Supercrit. Fluids, 177, 105327 (2021); https://doi.org/10.1016/j.supflu.2021.105327.
  • M. OSADA, K. TAMURA, and I. SHIMADA, “Prediction of the Solubility of Organic Compounds in High-Temperature Water Using Machine Learning,” J. Supercrit. Fluids, 190, 105733 (2022); https://doi.org/10.1016/j.supflu.2022.105733.
  • S. KHOSHARAY et al., “Modelling Investigation on the Thermal Conductivity of Pure Liquid, Vapour, and Supercritical Refrigerants and Their Mixtures by Using Heyen EOS,” Phys. Chem. Liquids, 56, 1, 124 (2018); https://doi.org/10.1080/00319104.2017.1306859.
  • J. V. NIEUWENHUYSE, S. LECOMPTE, and M. DE PAEPE, “Current Status of the Thermohydraulic Behavior of Supercritical Refrigerants: A Review,” Appl. Thermal Eng., 218, 119201 (2023); https://doi.org/10.1016/j.applthermaleng.2022.119201.
  • A. IBRAHIM et al., “Numerical Investigations on Supercritical Heat Transfer Characteristics of Environmental Friendly Refrigerants,” Int. J. Clean Coal and Energy, 10, 2, 21 (2021); https://doi.org/10.4236/ijcce.2021.102002.
  • C. COCKRELL and K. TRACHENKO, “Double Universality of the Transition in the Supercritical State,” Queen Mary Universiaty of London; https://arxiv.org/abs/2208.06583.
  • P. I. BYSTROV et al., “Liquid-Metal Coolants for Heat Pipes and Power Plants,” p. 272, V. A. KIRILIN, Ed., Hemisphere Publishing Corporation, New York (1990).
  • “A Technology Roadmap for Generation IV Nuclear Energy Systems,” GIF-002–00, U.S. Department of Energy Nuclear Energy Research Advisory Committee and Generation IV International Forum (2002).
  • N. AKSAN et al., “Heat Transfer Behaviour and Thermodynamics Code Testing for Supercritical Water Cooled Reactors (SCWRs),” IAEA-TECDOC-1746, International Atomic Energy Agency (2014).
  • P. L. KIRILLOV and G. P. BOGOSLOVSKAYA, “Generation IV Supercritical Water-Cooled Nuclear Reactors: Realistic Prospects and Research Program,” Nucl. Eng. Technol., 5, 1, 67 (2019); https://doi.org/10.3897/nucet.5.34293.
  • A. V. ZRODNIKOV et al., “SVBR-75/100 Multipurpose Modular Low-Power Fast Reactor with Lead–Bismuth Coolant,” At. Energy, 97, 2, 528 (2004); https://doi.org/10.1023/B:ATEN.0000047677.16291.f2.
  • M. TAKAHASHI and S. UCHIDA, “Conceptual and Safety Design of Pb-Bi-Cooled Direct Contact Boiling Water Fast Reactor (PBWFR),” Bulletin-Res. Lab. Nucl. Reactors, 30, 206 (2006).
  • J.-Y. LIM and M.-H. KIM, “A New LFR Design Concept for Effective TRU Transmutation,” Prog. Nucl. Energy, 49, 3, 230 (2007); https://doi.org/10.1016/j.pnucene.2006.12.004.
  • J. J. SIENICKI and A. V. MOISSEYTSEV, Proc. Conf. Advances in Nuclear Power Plants 2005 (ICAPP05), Seoul, Korea, 2005, Vol. 6, p. 3777 ( 2005).
  • V. A. KRASHANININ et al., “Ab Initio Calculation of the Thermodynamic Properties of Liquid Alkali Metals,” Russian Metall., 2011, 709 (2011); https://doi.org/10.1134/S0036029511080106.
  • N. E. DUBININ, A. A. YURGEV, and N. A. VATOLIN, “Pseudopotential Calculation of the Structure and Thermodynamics of Liquid Alkali Metals with a Square-Well Model as a Reference System,” J. Struct. Chem., 53, 3, 468 (2012); https://doi.org/10.1134/S0022476612030080.
  • V. A. KRASHANININ, N. E. DUBININ, and N. A. VATOLIN, “Calculation of Thermodynamic Properties of Liquid Alkali Metals by the First-Principle-Pseudopotential and Weeks-Chandler-Andersen Methods,” Dok. Phys., 58, 8, 339 (2013); https://doi.org/10.1134/S1028335813080144.
  • V. I. RACHKOV et al., “Use of Liquid Metals in Nuclear and Thermonuclear Engineering, and in Other Innovative Technologies,” Thermal Eng., 61, 5, 337 (2014); https://nuclear-power-engineering.ru/en/issue/2014-01/.
  • D. K. BELASHCHENKO, “Structure and Thermodynamic Properties of Liquid Cesium at Pressures Below 10 GPa and Temperatures Below 4000 K According to the Molecular Dynamics Data,” Rus. J. Phys. Chem. A, 89, 11, 2051 (2015); https://doi.org/10.1134/S003602441503005X.
  • D. WEIXIA, Z. GAOLING, B. QIFU, G. XINGYONG, Effect of Ca/Ti Molar Ratio on Structure and Photocatalytic Properties of CaTiO3 with Dendrite Structure, Chinese J. Mat. Res., 31, 4, 279–284 (2017), https://doi.org/10.11901/1005.3093.2016.225
  • V. SOBOLEV, “‘Database of Thermophysical Properties of Liquid Metal Coolants for GEN-IV,” SCK.CEN-BLG-1069, pp. 1–175, Beligan Nuclear Research Centre (2010).
  • V. SOBOLEV, “Properties of Liquid Metal Coolants,” Comprehensive Nucl. Mater., 2, 373 (2012); https://doi.org/10.1016/B978-0-08-056033-5.00130-0.
  • V. SOBOLEV and P. SCHUURMANS, “Thermophysical Properties of Liquid Metal Coolants: Na, Pb, Pb–Bi(e),” Comprehensive Nucl. Mater., 7, 457 (2020); https://doi.org/10.1016/B978-0-12-803581-8.00682-2
  • L. P. FILIPPOV, “Estimation of Thermophysical Properties of Liquids and Gases,” Energoatomizdat, 55 (1988).
  • S. VELASCO et al., “Waring and Riedel Functions for the Liquid–Vapor Coexistence Curve,” Ind. Eng. Chem. Res., 51, 7, 3197 (2012); https://doi.org/10.1021/ie2028393.
  • M. M. MARTYNYUK and R. BALASUBRAMANIAN, “Equation of State for Fluid Alkali Metals: Binodal,” Int. J. Thermophys., 16, 2, 533 (1995); https://doi.org/10.1007/BF01441919.
  • V. K. SEMENCHENKO, Crystallogr., 9, 611 (1964).
  • V. K. SEMENCHENKO, “About the Pressure-Dependence of Supercritical Transitions,” Zh. Fiz. Khim., 36, 5, 1115 (1962).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.