336
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spherical Harmonics and Discontinuous Galerkin Finite Element Methods for the Three-Dimensional Neutron Transport Equation: Application to Core and Lattice Calculation

ORCID Icon, , , &
Pages 1584-1599 | Received 20 Sep 2022, Accepted 29 Nov 2022, Published online: 01 Feb 2023

References

  • J. DUDERSTADT and W. MARTIN, Transport Theory, John Wiley and Sons, New York (1979).
  • B. DAVISON, “Spherical-Harmonics Method for Neutron Transport Theory Problems with Incomplete Symmetry,” Can. J. Phys., 36, 4, 462 (Apr. 1958); https://doi.org/10.1139/p58-048.
  • E. E. LEWIS and W. F. MILLER, Computational Methods of Neutron Transport, Wiley, New York (1984).
  • S. CHANDRASEKHAR, “On the Radiative Equilibrium of a Stellar Atmosphere. II,” Astrophys. J., 100, 76 (1944); https://doi.org/10.1086/144639.
  • K. D. LATHROP, “Ray Effects in Discrete Ordinates Equations,” Nucl. Sci. Eng., 32, 3, 357 (June 1968); https://doi.org/10.13182/NSE68-4.
  • C. R. E. DE OLIVEIRA, “An Arbitrary Geometry Finite Element Method for Multigroup Neutron Transport with Anisotropic Scattering,” Prog. Nucl. Energy, 18, 1, 227 (Jan. 1986); https://doi.org/10.1016/0149-1970(86)90029-6.
  • E. E. LEWIS, C. B. CARRICO, and G. PALMIOTTI, “Variational Nodal Formulation for the Spherical Harmonics Equations,” Nucl. Sci. Eng., 122, 2, 194 (Feb. 1996); https://doi.org/10.13182/NSE96-1.
  • S. VAN CRIEKINGEN, F. NATAF, and P. HAVÉ, “Parafish: A Parallel FE-PN Neutron Transport Solver Based on Domain Decomposition,” Ann. Nucl. Energy, 38, 1, 145 (Jan. 2011); https://doi.org/10.1016/j.anucene.2010.08.002.
  • W. REED and T. HILL, “Triangular Mesh Methods for the Neutron Transport Equation,” Technical Report LA-UR-73-479, p. 23, Los Alamos Scientific Laboratory (1973).
  • C. JOHNSON and J. PITKÄRANTA, “An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation,” Math. Comput., 46, 1 (1986); https://doi.org/10.1090/S0025-5718-1986-0815828-4.
  • L. BOURHRARA, “New Variational Formulations for the Neutron Transport Equation,” Transp. Theory Stat. Phys., 33, 2, 93 (Jan. 2004); https://doi.org/10.1081/TT-120037803.
  • L. BOURHRARA, “A New Numerical Method for Solving the Boltzmann Transport Equation Using the PN Method and the Discontinuous Finite Elements on Unstructured and Curved Meshes,” J. Comput. Phys., 397, 108801 (July 2019); https://doi.org/10.1016/j.jcp.2019.07.001.
  • D. SCHNEIDER et al., “APOLLO3® CEA/DEN Deterministic Multi-purpose Code for Reactor Physics Analysis,” presented at PHYSOR 2016—Unifying Theory and Experiments in the 21st Century, Sun Valley, Idaho, May 2016.
  • D. TOMATIS et al., “Overview of SERMA’s Graphical User Interfaces for Lattice Transport Calculations,” Energies, 15, 4, 1417 (Jan. 2022); https://doi.org/10.3390/en15041417.
  • K. ASSOGBA et al., “Precise 3D Reactor Core Calculation Using Spherical Harmonics and Discontinuous Galerkin Finite Element Methods,” Proc. Int. Conf. on Physics of Reactors 2022 (PHYSOR 2022), Pittsburgh, Pennsylvania, May 2022, p. 1224, American Nuclear Society ( 2022); https://doi.org/10.13182/PHYSOR22-37354.
  • R. DAUTRAY and J.-L. LIONS, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 6, Springer Berlin Heidelberg (1988).
  • J. E. MOREL and J. M. MCGHEE, “A Self-Adjoint Angular Flux Equation,” Nucl. Sci. Eng., 132, 3, 312 (July 1999); https://doi.org/10.13182/NSE132-312.
  • F. BREZZI, L. D. MARINI, and E. SÜLI, “Discontinuous Galerkin Methods for First-Order Hyperbolic Problems,” Math. Models Methods Appl. Sci., 14, 12, 1893 (Dec. 2004); https://doi.org/10.1142/S0218202504003866.
  • P. LESAINT and P. A. RAVIART, “On a Finite Element Method for Solving the Neutron Transport Equation,” Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DE BOOR, Ed., pp. 89–123, Academic Press (Jan. 1974); https://doi.org/10.1016/B978-0-12-208350-1.50008-X.
  • H. A. VAN DER VORST, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput., 13, 2, 631 (Mar. 1992); https://doi.org/10.1137/0913035.
  • Y. SAAD and M. H. SCHULTZ, “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput., 7, 3, 856 (July 1986); https://doi.org/10.1137/0907058.
  • T. TAKEDA and H. IKEDA, “3-D Neutron Transport Benchmarks,” J. Nucl. Sci. Technol., 28, 7, 656 (1991); https://doi.org/10.3327/jnst.28.656.
  • E. E. LEWIS et al., “Benchmark Specifications for Deterministic MOX Fuel Assembly Transport Calculations Without Spatial Homogenization (3-D Extension C5G7 MOX),” NEA/NSC/DOC(2003)6, Organisation for Economic Co-operation and Development/Nuclear Energy Agency (2003).
  • A. SEUBERT, W. ZWERMANN, and S. LANGENBUCH, “Solution of the C5G7 3-D Extension Benchmark by the SN Code TORT,” Prog. Nucl. Energy, 48, 5, 432 (July 2006); https://doi.org/10.1016/j.pnucene.2006.01.007.
  • S. VAN CRIEKINGEN, E. E. LEWIS, and R. BEAUWENS, “Mixed-Hybrid Transport Discretization Using Even and Odd PN Expansions,” Nucl. Sci. Eng., 152, 2, 149 (Feb. 2006); https://doi.org/10.13182/NSE06-1.
  • A. YAMAMOTO et al., “Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels,” J. Nucl. Sci. Technol., 39, 8, 900 (Aug. 2002); https://doi.org/10.1080/18811248.2002.9715275.
  • A. GAMMICCHIA, S. SANTANDREA, and S. DULLA, “Cross Sections Polynomial Axial Expansion Within the APOLLO3® 3D Characteristics Method,” Ann. Nucl. Energy, 165, 108673 (Jan. 2022); https://doi.org/10.1016/j.anucene.2021.108673.
  • E. MASIELLO, R. SANCHEZ, and I. ZMIJAREVIC, “New Numerical Solution with the Method of Short Characteristics for 2-D Heterogeneous Cartesian Cells in the APOLLO2 Code: Numerical Analysis and Tests,” Nucl. Sci. Eng., 161, 3, 257 (Mar. 2009); https://doi.org/10.13182/NSE161-257.
  • E. MASIELLO, R. LENAIN, and W. FORD, “3D Heterogeneous Cartesian Cells for Transport-Based Core Simulations,” Ann. Nucl. Energy, 142, 107364 (July 2020); https://doi.org/10.1016/j.anucene.2020.107364.
  • Y. S. BAN et al., “Code-to-Code Comparisons on Spatial Solution Capabilities and Performances Between nTRACER and the Standalone IDT Solver of APOLLO3®,” Ann. Nucl. Energy, 115, 573 (May 2018); https://doi.org/10.1016/j.anucene.2018.02.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.